

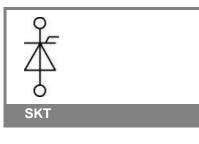
Capsule Thyristor

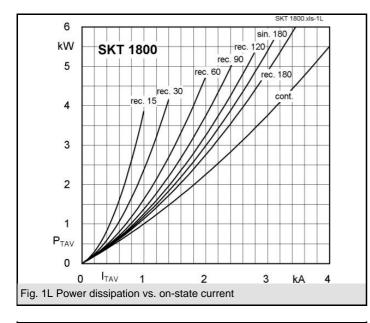
Line	Thyristor
------	-----------

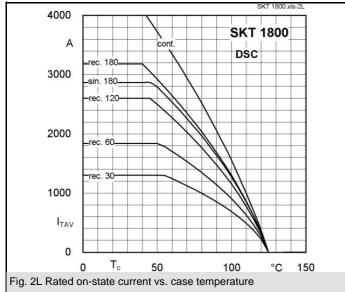
SKT 1800

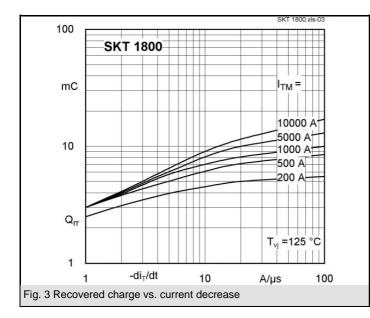
Features

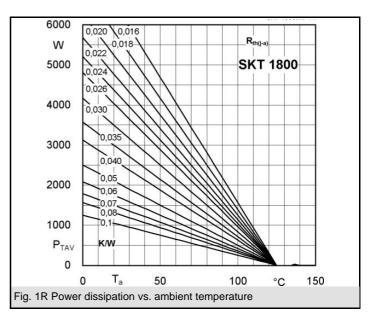
- Hermetic metal case with ceramic insulator
- Capsule package for double sided cooling
- Shallow design with single sided cooling
- Off-state and reverse voltages up to 1600 V
- Amplifying gate

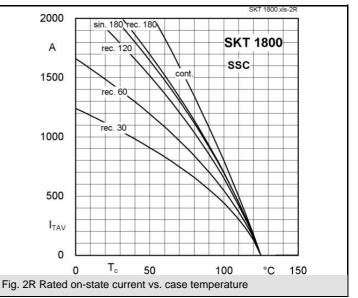

Typical Applications

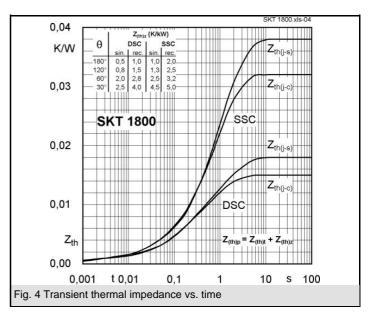

- DC motor control (e. g. for machine tools)
 Controlled rectifiers
- (e. g. for battery charging)
- AC controllers (e. g. for temperature control)
- Soft starters for AC motorsRecommended snubber network

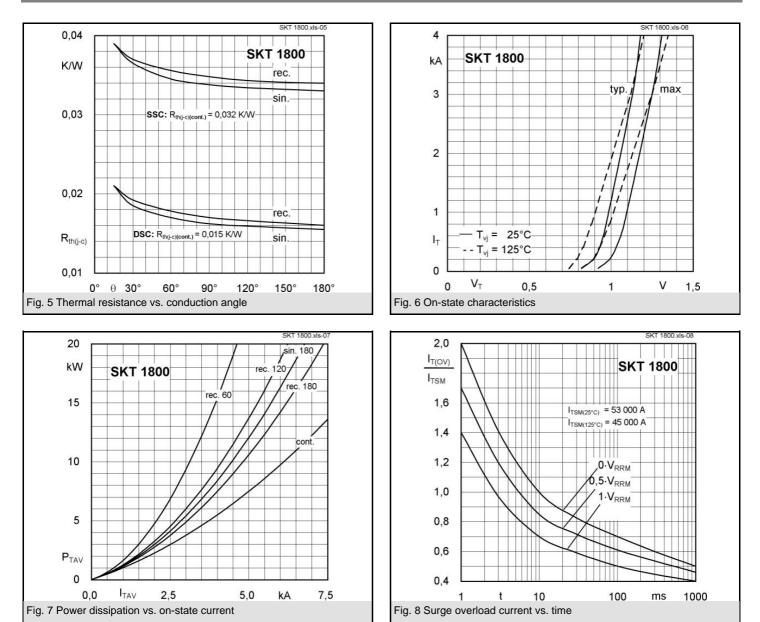

e. g. for V_{VRMS} \leq 400 V: R = 33 $\Omega/32$ W, C = 1 μF

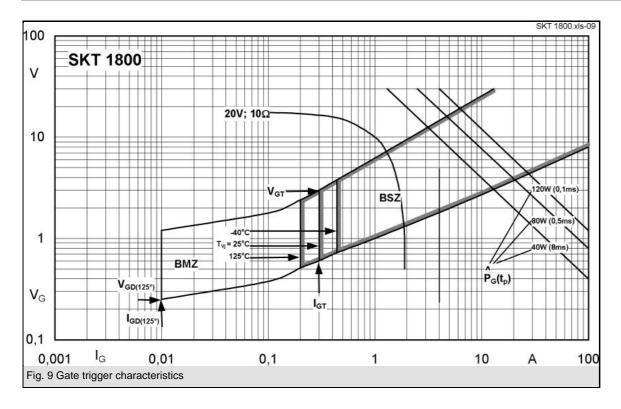

V _{RSM}	V _{RRM} , V _{DRM}	I_{TRMS} = 4500 A (maximum value for continuous operation)	
V	V	I_{TAV} = 1800 A (sin. 180; DSC; T_c = 85 °C)	
1300	1200	SKT 1800/12E	
1500	1400	SKT 1800/14E	
1700	1600	SKT 1800/16E	

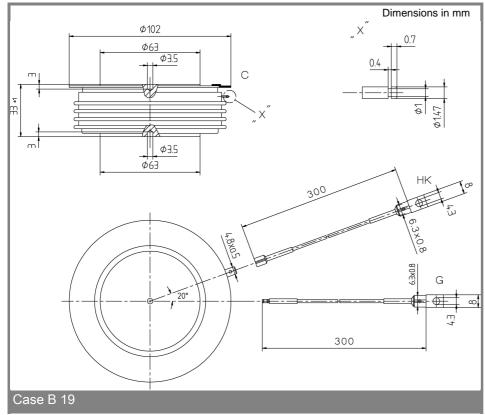

Symbol	Conditions	Values	Units
I _{TAV}	sin. 180; T _c = 100 (85) °C	2500 (1270)	А
I _D	2 x N4/250; T _a = 45 °C; B2 / B6	2500 / 3600	А
	2 x N4/400; T _a = 45 °C; B2 / B6	2800 /4000	A
I _{RMS}	2 x N4/250; T _a = 45 °C; W1C	2800	А
I _{TSM}	T _{vj} = 25 °C; 10 ms	53000	А
	T _{vj} = 125 °C; 10 ms	45000	А
i²t	T _{vj} = 25 °C; 8,3 10 ms	1400000	A²s
	T _{vj} = 125 °C; 8,3 10 ms	1000000	A²s
V _T	T _{vj} = 25 °C; I _T = 3000 A	max. 1,25	V
V _{T(TO)}	T _{vj} = 125 °C	max. 0,88	V
r _T	T _{vj} = 125 °C	max. 0,124	mΩ
I _{DD} ; I _{RD}	T_{vj} = 125 °C; V_{RD} = V_{RRM} ; V_{DD} = V_{DRM}	max. 100	mA
t _{gd}	T _{vj} = 25 °C; I _G = 1 A; di _G /dt = 1 A/μs	1	μs
t _{gr}	V _D = 0,67 * V _{DRM}	2	μs
(di/dt) _{cr}	T _{vi} = 125 °C	max. 150	A/µs
(dv/dt) _{cr}	T _{vj} = 125 °C	max. 1000	V/µs
t _q	T _{vj} = 125 °C	200 300	μs
Ч _Н	T _{vj} = 25 °C; typ. / max.	500 / 1000	mA
I _L	T _{vj} = 25 °C; typ. / max.	2000 / 5000	mA
V _{GT}	T _{vj} = 25 °C; d.c.	min. 3	V
I _{GT}	$T_{vj} = 25 \text{ °C; d.c.}$	min. 300	mA
V_{GD}	$T_{vj} = 125 \ ^{\circ}C; \ d.c.$	max. 0,25	V
I _{GD}	T _{vj} = 125 °C; d.c.	max. 10	mA
R _{th(j-c)}	cont.; DSC	0,015	K/W
R _{th(j-c)}	sin. 180; DSC / SSC	0,0155 / 0,033	K/W
R _{th(j-c)}	rec. 120; DSC / SSC	0,0165 / 0,0345	K/W
R _{th(c-s)}	DSC / SSC	0,003 / 0,006	K/W
T _{vj}		- 40 + 125	°C
T _{stg}		- 40 + 130	°C
V _{isol}		-	V~
F	mounting force	27 34	kN m/s²
a m	approx.	1000	g
		B 19	9
Case		619	











This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.