## **SKT 551**



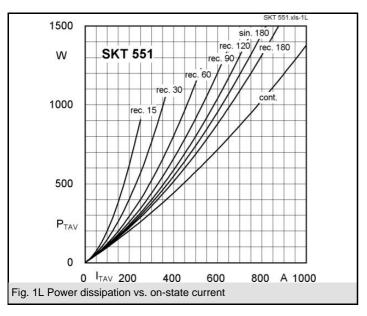
## **Capsule Thyristors**

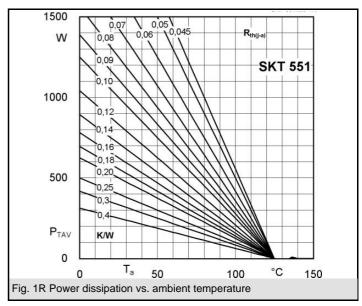
### **Thyristors**

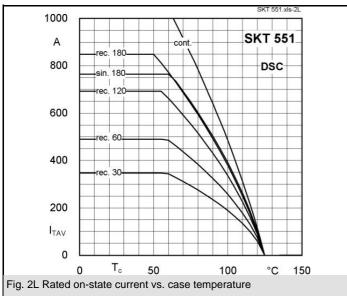
#### **SKT 551**

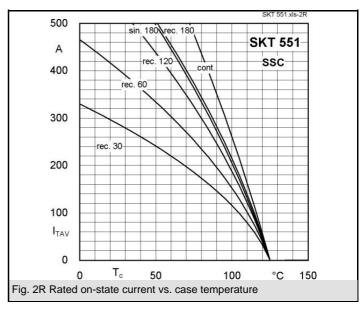
#### **Features**

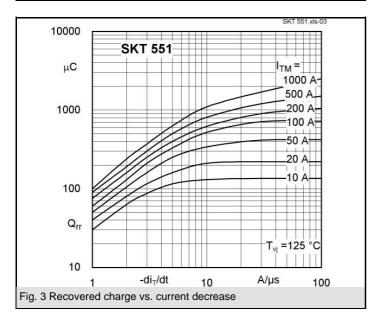
- Hermetic metal case with ceramic insulator
- Capsule package for double sided cooling
- Shallow design with single sided cooling
- · International standard case
- Off-state and reverse voltages up to 1800 V
- · Amplifying gate

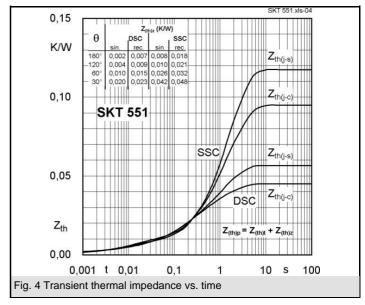

### **Typical Applications**


- DC motor control (e. g. for machine tools)
- Controlled rectifiers
  (e. g. for battery charging)
- AC controllers
  - (e. g. for temperature control)
- Recommended snubber network e.g. for  $V_{VRMS} \le 400 \text{ V}$ : R = 33  $\Omega/32$  W, C = 0,47  $\mu F$

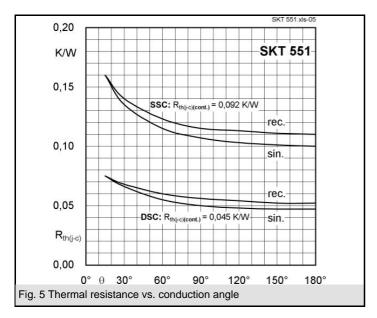

| V <sub>RSM</sub> | V <sub>RRM</sub> , V <sub>DRM</sub> | I <sub>TRMS</sub> = 1200 A (maximum value for continuous operation) |  |
|------------------|-------------------------------------|---------------------------------------------------------------------|--|
| V                | V                                   | I <sub>TAV</sub> = 550 A (sin. 180; DSC; T <sub>c</sub> = 85 °C)    |  |
| 900              | 800                                 | SKT 551/08E                                                         |  |
| 1300             | 1200                                | SKT 551/12E                                                         |  |
| 1500             | 1400                                | SKT 551/14E                                                         |  |
| 1700             | 1600                                | SKT 551/16E                                                         |  |
| 1900             | 1800                                | SKT 551/18E                                                         |  |

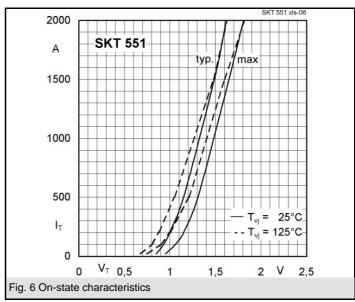

| Symbol                | Conditions                                                                             | Values            | Units |
|-----------------------|----------------------------------------------------------------------------------------|-------------------|-------|
| I <sub>TAV</sub>      | sin. 180; T <sub>c</sub> = 100 (85) °C                                                 | 391 (550 )        | Α     |
| I <sub>D</sub>        | 2 x P8/180; T <sub>a</sub> = 45 °C; B2 / B6                                            | 390 / 560         | Α     |
|                       | 2 x P8/180 F; T <sub>a</sub> = 35 °C; B2 / B6                                          | 980 /1340         | Α     |
| I <sub>RMS</sub>      | 2 x P8/180; T <sub>a</sub> = 45 °C; W1C                                                | 430               | Α     |
| I <sub>TSM</sub>      | T <sub>vj</sub> = 25 °C; 10 ms                                                         | 9000              | Α     |
|                       | $T_{vj} = 125 ^{\circ}\text{C}; 10 \text{ms}$                                          | 8000              | Α     |
| i²t                   | T <sub>vj</sub> = 25 °C; 8,3 10 ms                                                     | 405000            | A²s   |
|                       | T <sub>vj</sub> = 125 °C; 8,3 10 ms                                                    | 320000            | A²s   |
| V <sub>T</sub>        | T <sub>vi</sub> = 25 °C; I <sub>T</sub> = 1500 A                                       | max. 1,65         | V     |
| $V_{T(TO)}$           | T <sub>vj</sub> = 125 °C                                                               | max. 0,925        | V     |
| r <sub>T</sub>        | T <sub>vj</sub> = 125 °C                                                               | max. 0,45         | mΩ    |
| $I_{DD}$ ; $I_{RD}$   | $T_{vj} = 125  ^{\circ}C;  V_{RD} = V_{RRM};  V_{DD} = V_{DRM}$                        | max. 50           | mA    |
| t <sub>gd</sub>       | $T_{vj} = 25 ^{\circ}\text{C}; I_{G} = 1 \text{A}; di_{G}/dt = 1 \text{A/}\mu\text{s}$ | 1                 | μs    |
| t <sub>gr</sub>       | $V_{\rm D} = 0.67 * V_{\rm DRM}$                                                       | 1                 | μs    |
| (di/dt) <sub>cr</sub> | T <sub>vi</sub> = 125 °C                                                               | max. 125          | A/µs  |
| (dv/dt) <sub>cr</sub> | T <sub>vi</sub> = 125 °C                                                               | max. 1000         | V/µs  |
| t <sub>q</sub>        | $T_{vj} = 125  ^{\circ}C$                                                              | 50 150            | μs    |
| I <sub>H</sub>        | $T_{vj}$ = 25 °C; typ. / max.                                                          | 150 / 500         | mA    |
| $I_{L}$               | $T_{vj}$ = 25 °C; $R_G$ = 33 $\Omega$ ; typ. / max.                                    | 500 / 2000        | mA    |
| V <sub>GT</sub>       | $T_{vj} = 25 ^{\circ}\text{C}; \text{d.c.}$                                            | min. 3            | V     |
| I <sub>GT</sub>       | $T_{vj}$ = 25 °C; d.c.                                                                 | min. 250          | mA    |
| $V_{GD}$              | $T_{vj} = 125 ^{\circ}\text{C}; \text{d.c.}$                                           | max. 0,25         | V     |
| $I_{GD}$              | $T_{vj}$ = 125 °C; d.c.                                                                | max. 10           | mA    |
| R <sub>th(j-c)</sub>  | cont.; DSC                                                                             | 0,045             | K/W   |
| R <sub>th(j-c)</sub>  | sin. 180; DSC / SSC                                                                    | 0,047 / 0,1       | K/W   |
| R <sub>th(j-c)</sub>  | rec. 120; DSC / SSC                                                                    | 0,054 / 0,113     | K/W   |
| R <sub>th(c-s)</sub>  | DSC / SSC                                                                              | 0,012 / 0,024     | K/W   |
| $T_{vj}$              |                                                                                        | - 40 + 125        | °C    |
| $T_{stg}$             |                                                                                        | - 40 <b>+</b> 130 | °C    |
| V <sub>isol</sub>     |                                                                                        | -                 | V~    |
| F                     | mounting force                                                                         | 5,2 8             | kN    |
| а                     |                                                                                        |                   | m/s²  |
| m                     | approx.                                                                                | 105               | g     |
| Case                  |                                                                                        | B 11              |       |
|                       |                                                                                        |                   |       |
|                       |                                                                                        |                   |       |

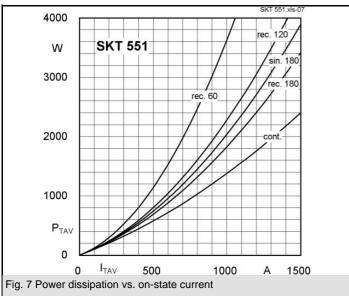


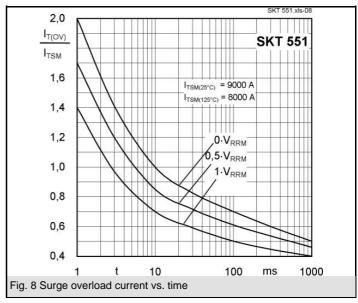



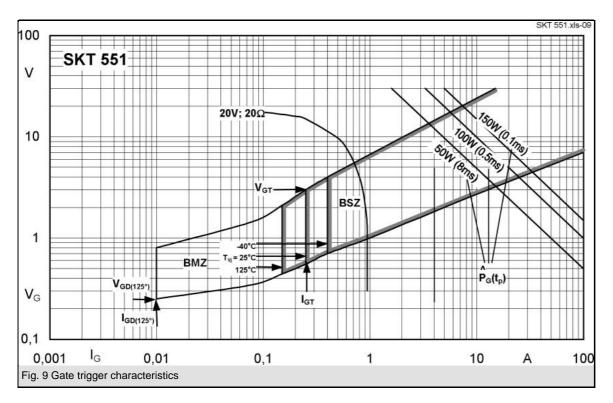


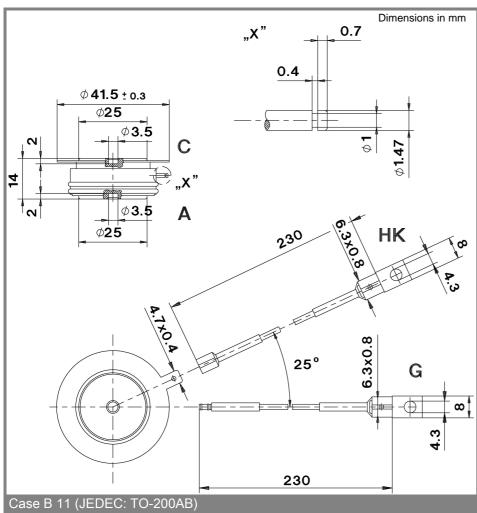





# **SKT 551**














This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.