SKT 1400

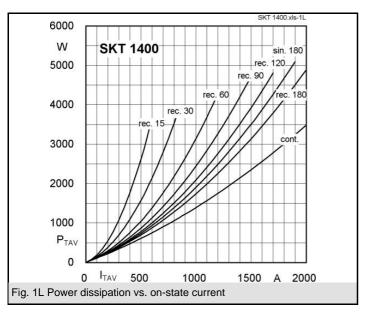
Capsule Thyristor

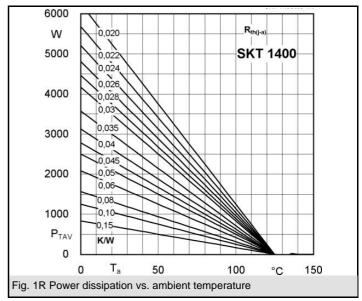
Line Thyristor

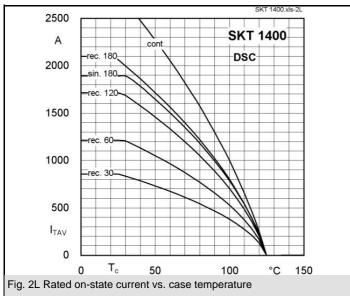
SKT 1400

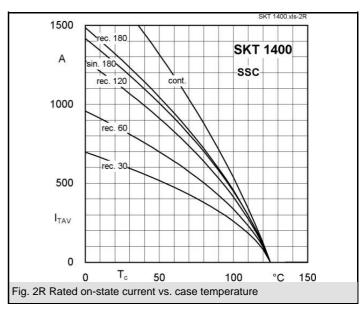
Features

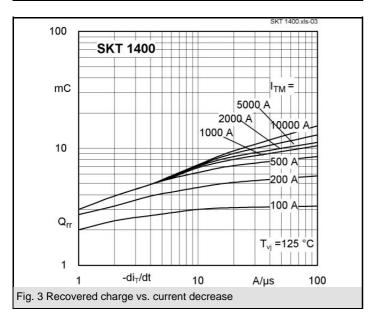
- Hermetic metal case with ceramic insulator
- Capsule package for double sided cooling
- Shallow design with single sided cooling
- Off-state and reverse voltages up to 3600 V
- Amplifying gate

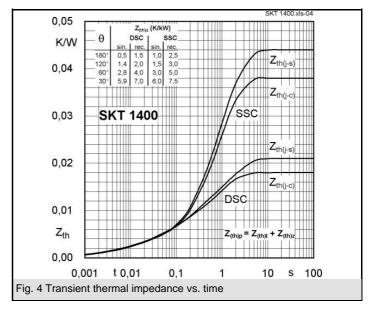

Typical Applications

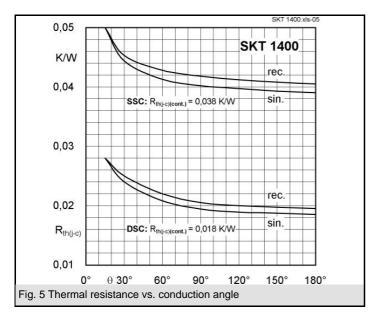

- DC motor control (e. g. for machine tools)
- Controlled rectifiers
 (e. g. for battery charging)
- AC controllers
 - (e. g. for temperature control)
- Soft starters for AC motors
- Recommended snubber network e. g. for $V_{VRMS} \le 400 \text{ V}$: R = 33 $\Omega/32$ W, C = 1 μF

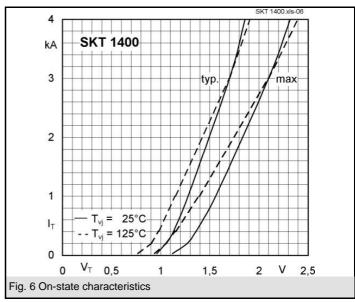

V _{RSM}	V_{RRM}, V_{DRM}	I _{TRMS} = 3000 A (maximum value for continuous operation)		
V	V	I _{TAV} = 1400 A (sin. 180; DSC; T _c = 66 °C)		
2700	2600	SKT 1400/26E		
2900	2800	SKT 1400/28E		
3300	3200	SKT 1400/32E		
3700	3600	SKT 1400/36E		

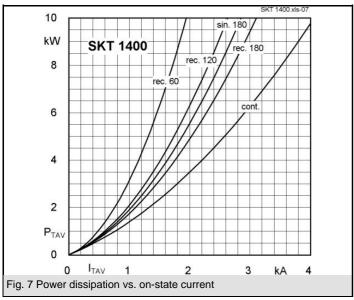

Symbol	Conditions	Values	Units
I _{TAV}	sin. 180; T _c = 100 (85) °C	786 (1090)	Α
I _D	2 x N4/250; T _a = 45 °C; B2 / B6	1700 / 2400	Α
	2 x N4/400; T _a = 45 °C; B2 / B6	1900 /2600	Α
I _{RMS}	2 x N4/250; T _a = 45 °C; W1C	1900	Α
I _{TSM}	T _{vj} = 25 °C; 10 ms	29000	Α
	$T_{vj} = 125 ^{\circ}\text{C}; 10 \text{ms}$	25000	Α
i²t	T _{vj} = 25 °C; 8,3 10 ms	4200000	A²s
	T _{vj} = 125 °C; 8,3 10 ms	3125000	A²s
V_T	T _{vj} = 25 °C; I _T = 3000 A	max. 2,1	V
$V_{T(TO)}$	T _{vj} = 125 °C	max. 1,04	V
r _T	T _{vj} = 125 °C	max. 0,35	mΩ
I _{DD} ; I _{RD}	T_{vj} = 125 °C; V_{RD} = V_{RRM} ; V_{DD} = V_{DRM}	max. 100	mA
t _{gd}	$T_{vj} = 25 \text{ °C; } I_G = 1 \text{ A; } di_G/dt = 1 \text{ A/}\mu\text{s}$	1	μs
t _{gr}	$V_{D} = 0.67 * V_{DRM}$	2	μs
(di/dt) _{cr}	T _{vi} = 125 °C	max. 150	A/µs
(dv/dt) _{cr}	T _{vj} = 125 °C	max. 1000	V/µs
t _q	T _{vj} = 125 °C	200 300	μs
I _H	T_{vj} = 25 °C; typ. / max.	500 / 1000	mA
IL	T_{vj} = 25 °C; typ. / max.	2000 / 5000	mA
V _{GT}	T _{vj} = 25 °C; d.c.	min. 3	V
I_{GT}	$T_{vj} = 25 ^{\circ}\text{C}; \text{d.c.}$	min. 300	mA
V_{GD}	$T_{vj} = 125 ^{\circ}\text{C}; \text{d.c.}$	max. 0,25	V
I_{GD}	$T_{vj} = 125 ^{\circ}\text{C}; \text{d.c.}$	max. 10	mA
R _{th(j-c)}	cont.; DSC	0,018	K/W
R _{th(j-c)}	sin. 180; DSC / SSC	0,0185 / 0,039	K/W
R _{th(j-c)}	rec. 120; DSC / SSC	0,02 / 0,041	K/W
R _{th(c-s)}	DSC / SSC	0,003 / 0,006	K/W
T_{vj}		- 40 + 125	°C
T_{stg}		- 40 + 130	°C
V _{isol}		-	V~
F	mounting force	27 34	kN
а			m/s²
m	approx.	1000	g
Case		B 19	

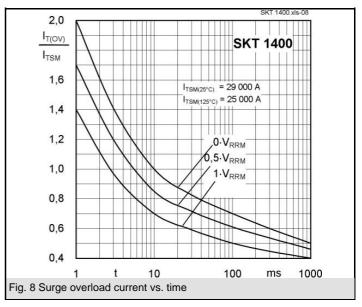


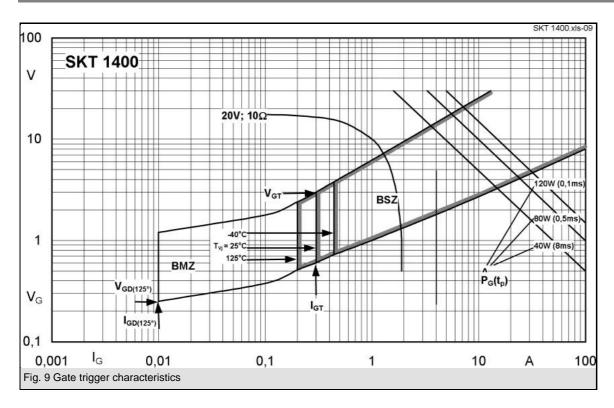


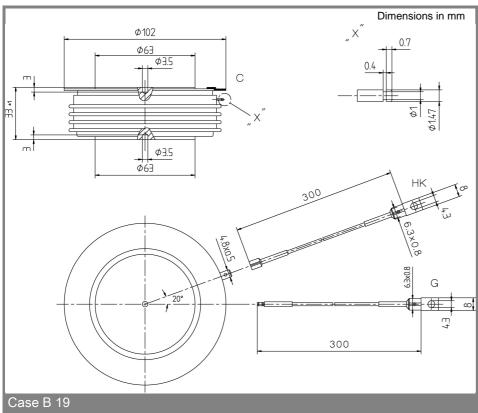









SKT 1400



This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.