OLED DISPLAY MODULE # **Product Specification** | CUSTOMER | Standard | | |----------------------|--------------|--| | PRODUCT
NUMBER | DD-2C16BE-1A | | | CUSTOMER
APPROVAL | | | | INTERNAL APPROVALS | | | | |--------------------------------------|------------------|------------------|--| | Product Mgr Doc. Control Electr. Eng | | | | | Richard
Applin | Alan
Wang | | | | Date: 16 July 13 | Date: 16 July 13 | Date: 16 July 13 | | # **TABLE OF CONTENTS** | 1 | MAI | IN FEATURES | •••••• | 4 | |--------|---|--|--------|--| | 2 | MEC | CHANICAL SPECIFICATION | ••••• | 5 | | | | MECHANICAL CHARACTERISTICS | | | | | | MECHANICAL DRAWING | | | | 3 | ELE | ECTRICAL SPECIFICATION | •••••• | 7 | | | | ABSOLUTE MAXIMUM RATINGS | | | | | | ELECTRICAL CHARACTERISTICS | | | | | | INTERFACE PIN ASSIGNMENTBLOCK DIAGRAM | | | | | | TIMING CHARACTERISTICS | | | | 4 | OPT | FICAL SPECIFICATION | | 18 | | | | OPTICAL CHARACTERISTICS | | | | 5 | | NCTIONAL SPECIFICATION | | | | J | | COMMANDS | | | | | | POWER UP/DOWN SEQUENCE | | | | | 5.3 | RESET CIRCUIT | | 20 | | | | ACTUAL APPLICATION EXAMPLE | | | | | | US2066 CGROM CHARACTER CODESELF-DEFINED CGRAM (CHARACTER GENERATOR RAM) | | | | , | | CKAGING AND LABELLING SPECIFICATION | | | | 6 | PAC | .KAGING AND LABELLING SPECIFICATION | | | | _ | 0774 | A T TOTAL A COLUMN A NACE COME CARE CARE CARE CARE | | | | 7 | | ALITY ASSURANCE SPECIFICATION | •••••• | 32 | | 7 | 7.1 | CONFORMITY | | 32 | | 7 | 7.1
7.2 | CONFORMITY DELIVERY ASSURANCE | | 32
32 | | | 7.1
7.2
7.3 | CONFORMITY DELIVERY ASSURANCE DEALING WITH CUSTOMER COMPLAINTS | | 32
32
32
38 | | 7
8 | 7.1
7.2
7.3
REL | CONFORMITY DELIVERY ASSURANCE DEALING WITH CUSTOMER COMPLAINTS LIABILITY SPECIFICATION | | 32
32
38
39 | | | 7.1
7.2
7.3
REL
8.1 | CONFORMITY DELIVERY ASSURANCE DEALING WITH CUSTOMER COMPLAINTS | | 32
32
38
39 | | | 7.1
7.2
7.3
REL
8.1
8.2 | CONFORMITY DELIVERY ASSURANCE DEALING WITH CUSTOMER COMPLAINTS LIABILITY SPECIFICATION RELIABILITY TESTS | | 32
32
38
39
39 | | 8 | 7.1
7.2
7.3
REL
8.1
8.2
HAN | CONFORMITY DELIVERY ASSURANCE DEALING WITH CUSTOMER COMPLAINTS LIABILITY SPECIFICATION RELIABILITY TESTS LIFE TIME | | 32
32
38
39
39
39 | | 8 | 7.1
7.2
7.3
REL
8.1
8.2
HAN
9.1
9.2 | CONFORMITY | | 32
32
38
39
39
39
40
40 | | 8 | 7.1
7.2
7.3
REL
8.1
8.2
HAN
9.1
9.2
9.3 | CONFORMITY | | 32
32
39
39
39
40
41 | | 8 | 7.1
7.2
7.3
REL
8.1
8.2
HAN
9.1
9.2
9.3
9.4 | CONFORMITY | | 32
32
38
39
39
40
41
41
42 | | 8 | 7.1
7.2
7.3
REL
8.1
8.2
HAN
9.1
9.2
9.3
9.4 | CONFORMITY | | 32
32
38
39
39
40
41
41
42 | | 8 | 7.1
7.2
7.3
REL
8.1
8.2
HAN
9.1
9.2
9.3
9.4
0 SUP | CONFORMITY | | 3239394041414243 | | 8 | 7.1
7.2
7.3
REL
8.1
8.2
HAN
9.1
9.2
9.3
9.4
0 SUP
10.1
10.2 | CONFORMITY DELIVERY ASSURANCE DEALING WITH CUSTOMER COMPLAINTS LIABILITY SPECIFICATION RELIABILITY TESTS LIFE TIME NDLING PRECAUTIONS HANDLING PRECAUTIONS STORAGE PRECAUTIONS DESIGNING PRECAUTIONS OTHER PRECAUTIONS PORTED ACCESSORIES DUO KIT. TRANSITION BOARD CARD | | 32
32
39
39
40
41
42
42
43 | | 8 | 7.1
7.2
7.3
REL
8.1
8.2
HAN
9.1
9.2
9.3
9.4
0 SUP
10.1
10.2
10.3 | CONFORMITY DELIVERY ASSURANCE DEALING WITH CUSTOMER COMPLAINTS LIABILITY SPECIFICATION RELIABILITY TESTS LIFE TIME NOLING PRECAUTIONS HANDLING PRECAUTIONS STORAGE PRECAUTIONS DESIGNING PRECAUTIONS OTHER PRECAUTIONS PORTED ACCESSORIES DUO KIT TRANSITION BOARD CARD CONNECTOR BOARD CARD | | 32323939404141424343 | | 8 | 7.1
7.2
7.3
REL
8.1
8.2
HAN
9.1
9.2
9.3
9.4
0 SUP
10.1
10.2
10.3
10.4 | CONFORMITY DELIVERY ASSURANCE DEALING WITH CUSTOMER COMPLAINTS LIABILITY SPECIFICATION RELIABILITY TESTS LIFE TIME NDLING PRECAUTIONS HANDLING PRECAUTIONS STORAGE PRECAUTIONS DESIGNING PRECAUTIONS OTHER PRECAUTIONS PORTED ACCESSORIES DUO KIT. TRANSITION BOARD CARD | | 323939404142434343 | | 8 | 7.1
7.2
7.3
REL 8.1 8.2 HAN 9.1 9.2 9.3 9.4 0 SUP 10.1 10.2 10.3 10.4 | CONFORMITY DELIVERY ASSURANCE DEALING WITH CUSTOMER COMPLAINTS LIABILITY SPECIFICATION RELIABILITY TESTS LIFE TIME NDLING PRECAUTIONS HANDLING PRECAUTIONS STORAGE PRECAUTIONS DESIGNING PRECAUTIONS OTHER PRECAUTIONS PORTED ACCESSORIES DUO KIT TRANSITION BOARD CARD CONNECTOR BOARD CARD | | 323939404142434343 | # REVISION RECORD | Rev. | Date | Page | Chapt. | Comment | ECR no. | |------|-----------|------|--------|-------------|---------| | A | 16 July13 | | | First Issue | Product No. | DD-2C16BE-1A | REV. A | |-------------|--------------|--------| | Flouuct No. | | | | Page | 3 / 43 | |------|--------| # 1 MAIN FEATURES | ITEM | CONTENTS | |-----------------------|-------------------------| | Characters x lines | 16 x 2 | | Character Font | 5 x 8 | | Overall Dimensions | 68.50 x 17.50 x 2.00 mm | | Colour | Light Blue | | Active Area | 56.22 x 11.52 mm | | Viewing Area | 58.22 x 13.52 mm | | Display Mode | Passive Matrix (2.26") | | Driving Method | 1/16 duty | | Driver IC | US2066 | | Operating temperature | -40 ~ +85 °C | | Storage temperature | -40 ~ +90 °C | | Product No. | DD-2C16BE-1A | REV. A | |-------------|--------------|--------| | Floduct No. | | | | Page | 4 / 43 | |------|--------| |------|--------| # **2 MECHANICAL SPECIFICATION** # 2.1 MECHANICAL CHARACTERISTICS | ITEM | CHARACTERISTIC | UNIT | |----------------------|----------------------|------| | Characters x lines | 16 x 2 | | | Overall Dimensions | 68.50 x 17.50 x 2.00 | mm | | Viewing Area | 58.22 x 13.52 | mm | | Active Area | 56.22 x 11.52 | mm | | Dot Size | 0.57 x 0.67 | mm | | Dot Pitch | 0.60 x 0.70 | mm | | Character size | 2.97 x 5.57 | mm | | Weight | 4.98 | g | | IC Controller/Driver | US2066 | | | Product No. | DD-2C16BE-1A | REV. A | |-------------|--------------|--------| | Floduct No. | | | | Page | 5 / 43 | |------|--------| ## 2.2 MECHANICAL DRAWING ## 3 ELECTRICAL SPECIFICATION ## 3.1 ABSOLUTE MAXIMUM RATINGS VSS = 0 V, Ta = 25 °C | Item | Symbol | Min | Max | Unit | Note | |-----------------------------|-------------------|------|-----|------|-----------| | Supply Voltage for logic | V_{DD} | -0.3 | 6 | V | | | Supply voltage for I/O Pins | V _{DDIO} | -0.3 | 6 | V | Note 1, 2 | | Supply voltage for Display | Vcc | 0 | 15 | V | | | Operating Temperature | Тор | -40 | 85 | °C | Note 2 | | Storage Temperature | Tst | -40 | 90 | °C | Note 3 | Note 1: All the above voltages are on the basis of "VSS=0V". Note 2: When this module is used beyond the above absolute maximum ratings, permanent damage to the module may occur. Also for normal operations it's desirable to use this module under the conditions according to Section 3.2 "Electrical Characteristics". If this module is used beyond these conditions the module may malfunction and the reliability could deteriorate. Note 3: The defined temperature ranges do not include the polarizer. The maximum withstood temperature of the polarizer should be 80°C. ## 3.2 ELECTRICAL CHARACTERISTICS | Characteristics | Symbol | Conditions | Min | Тур | Max | Unit | |----------------------------|-----------------|---------------------|-----------------------------------|------|---------------------|------| | Summly Waltage for Logic | 17 | Low Voltage
Mode | 2.4 | 2.8 | VDDIO | V | | Supply Voltage for Logic | $V_{ m DD}$ | 5V Voltage
Mode | - | - | - | V | | Supply Voltage for I/O | $V_{ m DDIO}$ | Low Voltage
Mode | 2.4 | 2.8 | 3.6 | V | | Supply Voltage for 1/O | ▼ DDIO | 5V Voltage
Mode | 4.4 | 5.0 | 5.5 | V | | Supply Voltage for Display | V_{CC} | Note 1 | 8.5 | 9.0 | 9.5 | V | | High Level Input | V_{IH} | | $0.8 \mathrm{xV}_{\mathrm{DDIO}}$ | - | V_{DDIO} | V | | Low Level Input | V _{IL} | IOUT=0.1mA, | 0 | - | 0.2 x
VDDIO | V | | High Level Output | V_{OH} | 3.3MHz | 0.9 x
VDDIO | - | VDDIO | V | | Low Level Output | V_{OL} | | 0 | - | 0.1 x
VDDIO | V | | Operating current for VDD | IDD | - | - | 180 | 300 | μΑ | | | | Note 2 | - | 5.4 | 6.8 | mA | | Operating current for VCC | ICC | Note 3 | - | 8.0 | 10.0 | IIIA | | | | Note 4 | - | 13.6 | 17.0 | | | Sleep mode current for VDD | IDD
SLEEP | | - | 1 | 10 | μΑ | | Sleep mode current for VCC | ICC
SLEEP | | - | 2 | 10 | μΑ | Note 1: Brightness (Lbr) and Supply Voltage for Display (VCC), are subject to the change of the panel characteristics Note 2: $V_{DDIO} = 2.8V$ or 5.0V, $V_{CC} = 9.0V$, 30% display area turned on. Note 3: $V_{DDIO} = 2.8V$ or 5.0V, $V_{CC} = 9.0V$, 50% display area turned on. Note 4: $V_{DDIO} = 2.8V$ or 5.0V, $V_{CC} = 9.0V$, 100% display area turned on. | Product No. | DD-2C16BE-1A | REV. A | |-------------|--------------|--------| | Flouuct No. | | | | Page | 8 / 43 | |------|--------| ## 3.3 INTERFACE PIN ASSIGNMENT | No. | Symbol | I/O | Function | | | |-----|-----------|-----
---|--|--| | 1 | N.C.(GND) | - | Reserved Pin (Supporting Pin) The supporting pin can reduce the influence from stress on the function pins. This pin must be connected to external ground | | | | 2 | VSL | P | Segment Voltage Reference Pin When external VSL is not used, this pin should be left open. When external VSL is used, connect with resistor and diode to ground. | | | | 3 | VSS | P | Ground of Logic Circuit This is a ground pin. It also acts as a reference for the logic pins, the OEL driving voltages and the analogue circuits. It must be connected to external ground. | | | | 4 | REGVDD | I | Internal VDD Regulator Selection Pin When this pin is pulled HIGH, internal VDD regulator is enabled (VDD outputs 3.3V). When this pin is pulled LOW, internal VDD regulator is disabled (VDD outputs 5V). | | | | 5 | SHLC | I | COM Scan Direction Selection This pin is used to determine the Common output scanning direction SHLC COM scan direction COM0 to COM31 COM31 to COM0 | | | | 6 | SHLS | I | SEG Direction Selection This pin is used to determine the SEG direction SHLS SEG direction 0 SEG99 to SEG0 1 SEG0 to SEG99 | | | | 7 | VDD | P | Power Supply for Logic This is a voltage supply pin. It can be supplied externally or regulated internally. In 3V IO mode, this is a power input pin. In 5V IO mode, the output is around 3.3V. A capacitor should be connected between VDD and VSS under all circumstances | | | | 8 | VDDIO | Р | Power Supply for Interface Logic Level It should match with the MCU interface voltage level and must be connected to external source | | | | 9 | BS0 | | Communicating Protocol Select These pins are MCU interface selection input. See the following table: | | | | 10 | BS1 | I | BS0 BS1 BS2 Serial Interface 0 0 0 Invalid 1 0 0 I2C 0 1 0 | | | | Product No. | DD-2C16BE-1A | REV. A | |-------------|--------------|--------| | Floduct No. | | | | Page | 9 / 43 | |------|--------| |------|--------| | | | | Invalid | 1 | 1 | 0 | |-------|-------------|-----|---|---|--|----------------------------------| | | | | 8 bit 68XX-parallel | 0 | 0 | 1 | | 11 | BS2 | | 4 bit 68XX-parallel | 1 | 0 | 1 | | 11 | B 52 | | 8 bit 80XX-parallel | 0 | 1 | 1 | | | | | 4 bit 80XX-parallel | 1 | 1 | 1 | | 12 | GPIO | I/O | It is a reserved pin and is recor | mmended to | o keep it floa | ating. | | 13 | CS# | I | Chip Select This pin is the chip select input. The chip is enabled for MCU communication only when CS# is pulled low. | | | | | 14 | RES# | I | Power Reset for Controller and
This pin is reset signal input. V
of the chip is executed. | | in is low, ini | tialization | | 15 | D/C# | I | Data/Command Control This is Data/Command control the input at D7~D0 is treated a When the pin is pulled low, the transferred to the command re- relationship to MCU interface Timing Characteristics Diagra When the pin is pulled high an the data at SDIN is treated as o at SDIN will be transferred to mode, this pin acts as SA0 for | as display de input at De gister. For consignals, plesms. and serial interplate when the comma | ata. 97~D0 will be detail ease refer to ease mode it is pulled I nd register. | is selected, ow the data | | 16 | R/W# | I | Read/Write Select or Write This pin is MCU interface input 68XX-series microprocessor, to Read/Write (R/W#) selection in "High" for read mode and pull When 80XX interface mode is (WR#) input. Data write operate the CS# are pulled low. | this pin will
input. Pull the it to "Low
selected, the | be used as his pin to refer write notes that the best seen as see | node. | | 17 | E/RD# | I | Read/Write Enable or Read This pin is MCU interface input 68XX-series microprocessor, to Enable (E) signal. Read/write is pulled high and the CS# is pulled high and the CS# is pulled high and the CS# is pulled (RD#) signal. Data repin is pulled low and CS# is pulled low and CS# is pulled low. | this pin will operation is bulled low. -microproce and operation | be used as a sinitiated wheesor, this pi | the nen this pin | | 18~25 | D0~D7 | I/O | Host Data Input/Output Bus These pins are 8-bit bi-direction microprocessor's data bus. Whe be the serial data input SDIN a input SCLK. When I2C mode together and serve as SDAout, the serial clock input SCL | nen serial m
and D0 will
is selected, | be the serial D2, D1 sho | ted, D1 will l clock uld be tied | | Product No | DD-2C16BE-1A | REV. A | |-------------|--------------|--------| | Floduct No. | | | | Page | 10 / 43 | |------|---------| |------|---------| | 26 | IREF | I | Current Reference for Brightness Adjustment This pin is segment current reference pin. A resistor should be connected between this pin and VSS. Set the current at 12.5uA. | | | |----|-------|---|---|--|--| | 27 | ROM0 | | Character ROM Selection These pins are used to select Character ROM. See the following table: | | | | 28 | ROM1 | Ι | ROM ROM0 ROM1 A 0 0 B 1 0 C 0 1 S/W selectable 1 1 | | | | 29 | OPR0 | | Select the number of Character Generator These pins are used to select Character number of character generator. See the following table: CGROM CGRAM OPRO OPR1 | | | | 30 | OPR1 | I | 256 | | | | 31 | VCOMH | 0 | Voltage Output High Level for COM Signal This pin is the input pin for the voltage output high level for COM signals. A capacitor should be connected between this pin and VSS. | | | | 32 | VCC | Р | Power Supply for OEL Panel This is the most positive voltage supply pin of the chip. A stabilization capacitor should be connected between this pin and VSS when the converter is used. It must be supplied externally. | | | | 33 | N.C. | - | Reserved Pin (Supporting Pin) The supporting pin can reduce the influence from stress on the function pins. This pin must be connected to external ground | | | | Product No. | DD-2C16BE-1A | REV. A | |-------------|--------------|--------| | Floduct No. | | | | Page | 11 / 43 | |------|---------| |------|---------| ## 3.4 BLOCK DIAGRAM MCU Interface Selection: BS0, BS1 and BS2 Pins connected to MCU interface: CS#, RES#, D/C#, R/W#, E/RD#, and D0~D7 * SHLC, SHLC, ROM0, ROM1, OPR0 and OPR1 should be configured. C1, C3, C5: 0.1µF C2, C4: 4.7µF C6: 10µF C7: 4.7µF / 25V Tantalum Capacitor R1: $300k\Omega$, R1 = (Voltage at IREF - VSS) / IREF | Product No. | DD-2C16BE-1A | REV. A | |-------------|--------------|--------| | Flouuct No. | | | | Page | 12 / 43 | |------|---------| |------|---------| ## 3.5 TIMING CHARACTERISTICS ## 3.5.1 AC CHARACTERISTICS # 3.5.1.1 68XX-Series MPU Parallel Interface Timing Characteristics VDDIO-VSS = 2.4V to 3.6V / 4.4V to 5.5V, Ta = $25^{\circ}C$ | Symbol | Description | Min | Max | Unit | |--------------------|--|-----|-----|------| | tcycle | cle System Cycle Time | | - | ns | | t_{AS} | Address Setup Time | 13 | - | ns | | t _{AH} | Address Hold Time | 17 | - | ns | | t_{DSW} | Write Data Setup Time | 35 | - | ns | | t_{DHW} | Write Data Hold Time | 18 | - | ns | | t_{DHR} | Read Data Hold Time | 13 | - | ns | | t_{OH} | Output Disable
Time | 10 | 90 | ns | | t_{ACC} | Access Time | - | 125 | ns | | t_{CS} | Chip Select Time | 0 | - | ns | | t_{CH} | Chip Select Hold Time | 0 | - | ns | | | Chip Select Low Pulse Width (Read RAM) | 250 | | | | PW_{CSL} | Chip Select Low Pulse Width (Read Command) | 250 |] - | ns | | | Chip Select Low Pulse width (Write) | 50 | | | | D.V.V. | Chip Select High Pulse Width (Read) | 155 | | | | PW_{CSH} | Chip Select High Pulse Width (Write) | 55 | - | ns | | t_R | Rise Time | - | 15 | ns | | t_{F} | Fall Time | - | 15 | ns | | Product No. | DD-2C16BE-1A | REV. A | |-------------|--------------|--------| | Floduct No. | | | | Page | 13 / 43 | |------|---------| |------|---------| (CS# "Low Pulse Width" > E "High Pulse Width") Product No. DD-2C16BE-1A REV. A | Page | 14 / 43 | |------|---------| |------|---------| # 3.5.1.2 8080-Series MPU Parallel Interface Timing Characteristics VDDIO-VSS = 2.4V to 3.6V / 4.4V to 5.5V, $Ta = 25^{\circ}C$ | Symbol | Description | Min | Max | Unit | |---------------------|--------------------------------------|-----|-----|------| | tcycle | Clock Cycle Time | 400 | - | ns | | t_{AS} | Address Setup Time | 13 | - | ns | | t_{AH} | Address Hold Time | 17 | - | ns | | $t_{ m DSW}$ | Write Data Setup Time | 35 | - | ns | | $t_{ m DHW}$ | Write Data Hold Time | 18 | - | ns | | t_{DHR} | Read Data Hold Time | 13 | - | ns | | t _{OH} | Output Disable Time | 10 | 70 | ns | | t_{ACC} | Access Time | - | 125 | ns | | t_{PWLR} | Read Low Time | 250 | - | ns | | t_{PWLW} | Write Low Time | 50 | - | ns | | t_{PWHR} | Read High Time | 155 | - | ns | | t_{PWHW} | Write High Time | 55 | - | ns | | t_{CS} | Chip Select Setup Time | 0 | - | ns | | t_{CSH} | Chip Select Hold Time to Read Signal | 0 | | ns | | t_{CSF} | Chip Select Hold Time | 0 | - | ns | | t_R | Rise Time | - | 15 | ns | | t_{F} | Fall Time | - | 15 | ns | | Product No. | DD-2C16BE-1A | REV. A | |-------------|--------------|--------| | Floduct No. | | | | Page | 15 / 43 | |------|---------| |------|---------| # **3.5.1.3** Serial Interface Timing Characteristics VDDIO-VSS = 2.4V to 3.6V / 4.4V to 5.5V, Ta = 25°C | Symbol | Description | Min | Max | Unit | |-------------------|-------------------------|-----|-----|------| | tcycle | Serial Clock Cycle Time | 1 | 20 | ns | | $t_{ m SU1}$ | Address Setup Time | 60 | - | ns | | t _{H1} | Address Hold Time | 20 | - | ns | | ${ m t_{SU2}}$ | Chip Select Setup Time | 200 | - | ns | | $t_{\rm H2}$ | Chip Select Hold Time | TBD | - | ns | | t_{D} | Write Data Setup Time | - | TBD | ns | | t_{DH} | Write Data Hold Time | 10 | - | ns | | $t_{ m W}$ | Serial Clock Low Time | 400 | - | ns | | t_{R} | Rise Time | - | 15 | ns | | $t_{ m F}$ | Fall Time | - | 15 | ns | | Product No. | DD-2C16BE-1A | REV. A | |-------------|--------------|--------| | Flouuct No. | | | | Page | 16 / 43 | |------|---------| |------|---------| # **3.5.1.4** I²C Interface Timing Characteristics VDDIO-VSS = 2.4V to 3.6V / 4.4V to 5.5V, Ta = 25°C | Symbol | Description | Min | Max | Unit | |---------------------|---|-----|-----|------| | t _{cycle} | Clock Cycle Time | 2.5 | - | us | | t _{HSTART} | Start Condition Hold Time | 0.6 | - | us | | , | Data Hold Time (for "SDAOUT" Pin) Data | 5 | | | | $t_{ m HD}$ | Hold Time (for "SDAIN" Pin) | 300 | - | ns | | t_{SD} | Data Setup Time | 100 | - | ns | | t _{SSTART} | Start Condition Setup Time (Only relevant for a repeated Start condition) | 0.6 | - | us | | t _{SSTOP} | Stop Condition Setup Time | 0.6 | - | us | | t_{R} | Rise Time for Data and Clock Pin | | 300 | ns | | t_{F} | Fall Time for Data and Clock Pin | | 300 | ns | | t _{IDLE} | Idle Time before a New Transmission can
Start | 1.3 | - | us | | Product No. | DD-2C16BE-1A | REV. A | |-------------|--------------|--------| | Floduct No. | | | | Page | 17 / 43 | |------|---------| |------|---------| # **4 OPTICAL SPECIFICATION** # 4.1 OPTICAL CHARACTERISTICS | Characteristics | Symbol | Condition | Min | Тур | Max | Unit | |-----------------------|-----------------|-------------|------|-----------|------|-------------------| | Brightness | L _{br} | Note 5 | 60 | 80 | - | cd/m ² | | C.I.E.(Blue) | (X) | CIE 1021 | 0.12 | 0.16 | 0.20 | | | | (Y) | C.I.E. 1931 | 0.22 | 0.26 | 0.30 | - | | Dark Room
Contrast | CR | | - | >10,000:1 | - | - | | Viewing Angle | | | - | Free | - | degree | ^{*} Optical measurement taken at $V_{DDIO} = 2.8V$ or 5.0V, $V_{CC} = 9.0V$. | Product No. | DD-2C16BE-1A | REV. A | |-------------|--------------|--------| | Floduct No. | | | | Page | 18 / 43 | |------|---------| | | 10, .0 | ## 5 FUNCTIONAL SPECIFICATION #### 5.1 COMMANDS Please refer to the Technical Manual for the US2066 #### 5.2 POWER UP/DOWN SEQUENCE To protect panel and extend the panel lifetime, the driver IC power up/down routine should include a delay period between high voltage and low voltage power sources during turn on/off. It gives the panel enough time to complete the action of charge and discharge before/after the operation. #### **5.2.1 POWER UP SEQUENCE** - 1. Power up V_{DD} &V_{DDIO} - 2. Send Display off command - 3. Initialization - 4. Clear Screen - 5. Power up Vcc - 6. Delay 100ms - (When Vcc is stable) - 7. Send Display on command #### 5.2.2 POWER DOWN SEQUENCE - 1. Send Display off command - 2. Power down V_{CC} - 3. Delay 100ms (When V_{cc} reaches 0 and panel is Completely discharged) - 4. Power down $V_{DD} \& V_{DDIO}$ #### Conditions: - Since an ESD protection circuit is connected between VDD, VDDIO and VCC inside the driver IC, VCC becomes lower than VDD & VDDIO whenever VDD & VDDIO is ON and VCC is OFF. - 2) VCC should be kept float (disable) when it is OFF. - 3) Power Pins (VDD, VDDIO, and VCC) can never be pulled to ground under any circumstance. - 4) VDD & VDDIO should not be power down before VCC power down. | Product No. | DD-2C16BE-1A | REV. A | | |-------------|--------------|--------|--| | Floduct No. | | | | | Page | 19 / 43 | |------|---------| |------|---------| ## 5.3 RESET CIRCUIT When RES# input is low, the chip is initialized with the following status: - 1. Display is OFF - 2. 5×8 Character Mode - 3. Display start position is set at display RAM address 0 - 4. CGRAM address counter is set at 0 - 5. Cursor is OFF - 6. Blink is OFF - 7. Contrast control register is set at 7Fh - 8. OLED command set is disabled | Product No. | DD-2C16BE-1A | REV. A | |-------------|--------------|--------| | Floduct No. | | | #### 5.4 ACTUAL APPLICATION EXAMPLE Command usage and explanation of an actual example ## 5.4.1 Low Voltage I/O Application <Power up Sequence> - 1) This command could be programmable or defined by pin configuration. - 2) This command could be programmable or defined by pin configuration. The written value of the parameter should depend on the selection from Section 5.5 If the noise is accidentally occurred at the displaying window during the operation, please reset the display in order to recover the display function. | Product No. | DD-2C16BE-1A | REV. A | Dogo | 21 / 12 | |-------------|--------------|--------|------|---------| | Product No. | | | Page | 21 / 43 | ## <Power down Sequence> ## <Entering Sleep Mode> ## <Exiting Sleep Mode> | Product No. | DD-2C16BE-1A | REV. A | |-------------|--------------|--------| | | | | | $1 \text{ agc} = \frac{22}{43}$ | |---------------------------------| |---------------------------------| #### 5.4.2 5V I/O Application <Power up Sequence> - 1) This command could be programmable or defined by pin configuration. - 2) This command could be programmable or defined by pin configuration. The written value of the parameter should depend on the selection from Section 5.5 If the noise is accidentally occurred at the displaying window during the operation, please reset the display in order to recover the display function. | Product No. | DD-2C16BE-1A | REV. A | |-------------|--------------|--------| | | | | | Page | 23 / 43 | |------|---------| |------|---------| #### <Power down Sequence> #### <Entering Sleep Mode> #### <Exiting Sleep Mode> | Product No. | DD-2C16BE-1A | REV. A | |-------------|--------------|--------| | | | | | Page | 24 / 43 | |------|---------| | ruge | 27 / IJ | ## 5.5 US2066 CGROM CHARACTER CODE #### 5.5.1 ROMA | Product No. | DD-2C16BE-1A | REV. A | Dogo | 25 / 12 | |-------------|--------------|--------|------|---------| | Floduct No. | | | Page | 25 / 45 | **Language:** English, Irish, Spanish, Dutch (2), Danish, Norwegian, Swedish, Finnish, Czech (7), Slovene, Hungarian (2), Turkish (1) The number in the parentheses is showing how many letters might be needed to build and define additionally at CGRAM. The darker background is showing the maximum addresses (00h~07h) those could be allocated by OPR [1:0] setting. | Product No. | DD-2C16BE-1A | REV. A | |-------------|--------------|--------| | | | | | Page | 26 / 43 | |------|---------| |------|---------| # 5.5.2 ROMB | 67-4 | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 | |------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------| | 0000 | | | | Z | E | | | | | | | 8 | Ë | 8 | E | | | 0001 | | | H | | | | E | | | | 3 | Ħ | | I | g | | | 0010 | | | | | S | E | 3 | | | | Ľ | 8 | | Z | 置 | Z | | 0011 | | | | g | Ħ | | | | | ğ | Ë | 8 | | | Ħ | Ħ | | 0100 | | | | | K | | | Ü | | X | | | | X | Ë | | | 0101 | | 볊 | É | Ħ | | | | E | | 8 | ä | ŭ | 별 | Ħ | Ë | Ħ | | 0110 | | | 8 | | | Z. | | I | 铅 | | | H | 11 | Ħ | | | | 0111 | | | | n | E | | E | X | E | | ä | X | X | Ø | Ħ | | | 1000 | | X | | X | | Ÿ | Ï | Ø | II. | | Ë | N | | I | | 3 | | 1001 | | Ħ | | | Ш | ă | H | | ĭ | | | M | | I | ä | Ħ | | 1010 | | ø | Ti | | U | 9 | | | 8 | | |
2 | Ä | K | ğ | X | | 1011 | | | | | | | | | | | | | | H | ä | X | | 1100 | | | | 8 | | | | П | | | | | Ü | | B | Ħ | | 1101 | | | | | | | | B | | | | | | | | | | 1110 | | | | 8 | I | × | I | | X | 1 | X | | M | ğ | Ħ | | | 1111 | | | M | Ħ | | | | Ħ | | ä | ä | | Ш | B | | | | Product No. | DD-2C16BE-1A | REV. A | Dogo | 27 / 12 | |-------------|--------------|--------|------|---------| | Floduct No. | | | rage | 21/43 | **Language:** English, Irish, Portuguese, Spanish, French (1), Italian, German, Dutch (2), Icelandic, Danish, Norwegian, Swedish, Polish (8), Czech (8), Hungarian (2), Romanian (5), Turkish, Vietnamese (6), Russian (Small Letters) The number in the parentheses is showing how many letters might be needed to build and define additionally at CGRAM. The darker background is showing the maximum addresses (00h~07h) those could be allocated by OPR[1:0] setting. | Product No. | DD-2C16BE-1A | REV. A | |-------------|--------------|--------| | | | | | Page | 28 / 43 | |------|---------| |------|---------| ## 5.5.3 ROMC | 67-4 | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 | |------|------|----------|------|------|------|----------|------|------|------|--|-------------------|------|------|------|------|------| | 0000 | Ii | X | | Z | Ø | | K | | | | | | 8 | | Ë | | | 0001 | U | Ш | H | Ш | | K | | | I | 22 | | | | 2 | B | | | 0010 | 8 | ğ | | 盔 | | K | | I | Ë | Ш | | n | E | Ø | B | × | | 0011 | 2 | Ш | Ш | g | X | | Z | 8 | Ħ | ä | | Ü | ŭ | Ē | Ħ | | | 0100 | | | | | E | | | | Ë | | | | | | | | | 0101 | II | <u>E</u> | ğ | Ħ | | | | | E | | | | | | | E | | 0110 | U | | 8 | Z | | | | W | 별 | Ħ | | | | | ű | | | 0111 | | ¥ | H | | E | Ü | E | Z | E | Ħ | G | | | H | E | 翼 | | 1000 | | | | X | | * | | × | | | | | | | Ü | | | 1001 | | Ш | | Ĕ | Ш | Ö | H | | 별 | 8 | Ë | M | | B | | | | 1010 | | 図 | | | | <u>u</u> | | | | | | | | K | | | | 1011 | | I | | | 8 | | | | | Statute of the state sta | 12 11 11 11 11 11 | W | | | Ë | × | | 1100 | | Ħ | | 8 | | | | | | Ž | | 3 | B | B | Z | | | 1101 | | Ш | | | | | Ï | 8 | | | | Ø | | | | | | 1110 | K | X | | B | ı | X | | | | | | Œ | ij | | 8 | | | 1111 | E | Ø | M | | | | Z | | Ħ | 볊 | Ħ | | B | | 8 | | | Draduat No | DD-2C16BE-1A | REV. A | |-------------|--------------|--------| | Floduct No. | | | | Page | 29 / 43 | |------|---------| |------|---------| Language: English, Dutch (2), Japanese, Greek (Small Letters) The number in the parentheses is showing how many letters might be needed to build and define additionally at CGRAM. The darker background is showing the maximum addresses (00h~07h) those could be allocated by OPR[1:0] setting. # 5.6 SELF-DEFINED CGRAM (CHARACTER GENERATOR RAM) | ~4 | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 | |--------------|----------|---------|---------|--------------|-----------------|--------------|------------------------|--|----------------|--------|------------------------------|-----------|---------|------|------|------| | 0000 | | | | | | | | | | | | | | | | | | 0001 | X | | Ħ | | | <u>u</u> | | | | | 超 | II | X | Ш | | | | ۸da | racca | c Avail | able f | or Salf | -Defin | ad Ch | aracte | rc (O | PR[1:0 | 1 – [0 | .17) | | | | | | | 13-0 | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 | | 0000 | | | | | | | | | | | | | | | K | B | | 0001 | X | | 봄 | Ш | | 匿 | | W | | Ш | 18 | Ш | 囂 | Ш | H | | | | | | | (A) | | 100 | 0.00 | 3770 | | | 30 | 15 m | 200 THE | 100 | - T | 200 | | Adc | resse | s Avail | able f | or Self | -Defin | ed Ch | aracte | | PR[1:0 |] = [1 | :0]) | | | | | | | b3~0 | resse: | s Avail | able fo | or Self | -Defin | ed Ch | aracte | | |] = [1 | :0]) | 1011 | 1100 | 1101 | 1110 | 1111 | | b3~0 | | | | | | 0101 | 0110 | ers (OF | PR[1:0 | | | 1011 | 1100 | 1101 | 1110 | 1111 | | b3-0 | | 0001 | | 0011 | | 0101 | | ers (OF | PR[1:0 | | | 1011 | 1100 | 1101 | B | 1111 | | b3-0
0000 | C000 | 0001 | 9010 | 0011 | 0100 | 0101 | 0110 | ers (OF | PR[1:0 | 1001 | 1010 | 1011 | 1100 | 1101 | B | 1111 | | b3-0
0000 | C000 | 0001 | 9010 | 0011 | 0100 | 0101 | 0110 | ers (OF | PR[1:0 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 | | 63-0
0000 | liness A | 0001 | oo10 | 0911 Self-D | oioo
Defined | oloi
Char | olio
olio
acters | 0111 0111 0111 0111 0111 0111 0111 011 | PR[1:0
1000 | 1001 | 1010
1111
1211
1311 | <u>II</u> | | | K | | | Droduct No | DD-2C16BE-1A | REV. A | | |-------------|--------------|--------|--| | Product No. | | | | | Page | 30 / 43 | |------|---------| |------|---------| # **6 PACKAGING AND LABELLING SPECIFICATION** | Product No. | DD-2C16BE-1A | REV. A | |-------------|--------------|--------| | Floduct No. | | | | Page | 31 / 43 | |-------|---------------------| | 1 agc | 31 / 1 3 | ## 7 QUALITY ASSURANCE SPECIFICATION #### 7.1 CONFORMITY The performance, function and reliability of the shipped products conform to the Product Specification. ## 7.2 DELIVERY ASSURANCE #### 7.2.1 DELIVERY INSPECTION STANDARDS IPC-AA610, class 2 electronic assemblies standard #### 7.2.2 Zone definition ## 7.2.3 Visual inspection Test and measurement to be conducted under following conditions: Temperature: $23\pm5^{\circ}\text{C}$ Humidity: $55\pm15\%$ RH Fluorescent lamp: 30 W Distance between the Panel & Eyes of the Inspector: ≥30cm Distance between the Panel & the lamp: ≥50cm Finger glove (or finger cover) must be worn by the inspector. Inspection table or jig must be anti-electrostatic | Product No. | DD-2C16BE-1A | REV. A | |-------------|--------------|--------| | Floduct No. | | | | Page | 32 / 43 | |------|---------| |------|---------| # 7.2.4 Standard of appearance inspection | Partition | AQL | Definition | |-----------|------|---| | Major | 0.65 | Defects in Pattern Check (Display On) | | Minor | 1.0 | Defects in Cosmetic Check (Display Off) | | Check Item | Classification | Criteria | |---------------------------|----------------|---| | Panel
General Chipping | Minor | X > 6 mm (Along with Edge) Y > 1 mm (Perpendicular to edge) | | Product No. | DD-2C16BE-1A | REV. A | |-------------|--------------|--------| | Product No. | | | | Page | 33 / 43 | |------|---------| |------|---------| | Check Item | Classification | Criteria | |--------------------------------------|----------------|--| | Panel Crack | Minor | Any crack is not allowable. | | Cupper Exposed
(Even Pin or Film) | Minor | Not Allowable by Naked Eye
Inspection | | Film or Trace Damage | Minor | | | | | Not Allowable | | Terminal Lead Twist | Minor | D. TWISTED LEAD | | Terminal Lead Broken | Minor | Not Allowable A. BRUKEN LEAD | | Terminal Lead Prober
Mark | Acceptable | | | Product No. | DD-2C16BE-1A | REV. A | Dogo | 34 / 43 | |-------------|--------------|--------|------|---------| | Product No. | | | Page | 34 / 43 | | Check Item | Classification | Criteria | | |--|----------------|---|--| | Terminal Lead Bent | Minor | NG if any bent lead cause lead shorting. | | | (Not Twist or Broken) | Minor | NG for horizontally bent lead more than 50% of its width. | | | Glue or Contamination
on Pin
(Couldn't Be Removed
by Alcohol) | Minor | | | | Ink Marking on Back
Side of panel
(Exclude on Film) | Acceptable | Ignore for Any | | | Product No. | DD-2C16BE-1A | REV. A | |-------------|--------------|--------| | Floduct No. | | | | Page | 35 / 43 | |------|---------| |------|---------| | Check Item | Classification | Criteria |
---|----------------|---| | Any Dirt & Scratch on
Polarizer's Protective Film | Acceptable | Ignore for not Affect the
Polarizer | | Scratches, Fiber, Line-Shape
Defect
(On Polarizer) | Minor | | | Dirt, Black Spot, Foreign
Material,
(On Polarizer) | Minor | $\Phi \le 0.1$ Ignore $0.1 < \Phi \le 0.25$ $n \le 1$ $0.25 < \Phi$ $n = 0$ | | Dent, Bubbles, White spot
(Any Transparent Spot on
Polarizer) | Minor | Φ ≤ 0.5 → Ignore if no Influence on Display 0.5 < Φ | | Fingerprint, Flow Mark
(On Polarizer) | Minor | Not Allowable | - * Protective film should not be tear off when cosmetic check. - ** Definition of W & L & Φ (Unit: mm): $$\Phi = (a+b)/2$$ | Product No. | DD-2C16BE-1A | REV. A | |-------------|--------------|--------| | Flouuct No. | | | | Page | 36 / 43 | |------|---------| | Check Item | Classification | Criteria | |---------------|----------------|---------------| | No Display | Major | | | Flicker | Major | Not Allowable | | Missing Line | Major | | | Pixel Short | Major | | | Darker Pixel | Major | | | Wrong Display | Major | | | Un-uniform | Major | | | | | | _ | | | |-------------|--------------|--------|---|------|---------| | Product No. | DD-2C16BE-1A | REV. A | | Dogg | 27 / 12 | | Product No. | | | | Page | 3//43 | ## 7.3 DEALING WITH CUSTOMER COMPLAINTS ## 7.3.1 Non-conforming analysis Purchaser should supply Densitron with detailed data of non-conforming sample. After accepting it, Densitron should complete the analysis in two weeks from receiving the sample. If the analysis cannot be completed on time, Densitron must inform the purchaser. ## 7.3.2 Handling of non-conforming displays If any non-conforming displays are found during customer acceptance inspection which Densitron is clearly responsible for, return them to Densitron. Both Densitron and customer should analyse the reason and discuss the handling of non-conforming displays when the reason is not clear. Equally, both sides should discuss and come to agreement for issues pertaining to modification of Densitron quality assurance standard. | Product No. | DD-2C16BE-1A | REV. A | |-------------|--------------|--------| | Floduct No. | | | | Page | 38 / 43 | |------|---------| | 8- | 307 13 | ## **8 RELIABILITY SPECIFICATION** ## 8.1 RELIABILITY TESTS | Test Item | Test Condition | Evaluation and assessment | |---|---|---| | High Temperature Operation | 80°C, 240 hours | No abnormalities in function and appearance | | Low Temperature Operation | -40°C, 240 hours | No abnormalities in function and appearance | | High Temperature Storage | 90°C, 240 hours | No abnormalities in function and appearance | | Low Temperature Storage | -40°C, 240 hours | No abnormalities in function and appearance | | High Temperature & High
Humidity Storage | 60°C, 90%RH, 120 hours | No abnormalities in function and appearance | | Thermal Shock | 100 cycle of
-40°C 1 Hour,
85°C 1 Hour. 60 Mins dwell | No abnormalities in function and appearance | - The samples used for above tests do not include polarizer. - No moisture condensation is observed during tests. #### 8.1.1 FAILURE CHECK STANDARD After the completion of the described reliability test, the samples were left at room temperature for 2 hrs prior to conducting the failure teat at 23 ± 5 °C; $55\pm15\%$ RH ## 8.2 LIFE TIME | Item | Description | | | | | | |------|--|--------|-----|----------------------|--|--| | 1 | Function, performance, appearance, etc. shall be free from remarkable deterioration more than 15,000 hours under 80 cd/m² brightness and 50% Checkerboard, humidity (50% RH), and in area not exposed to direct sunlight. Software configuration follows Section 5.4 Initialization. | | | | | | | | Parameter | Min | Max | Conditions | | | | | Life Time (80 cd/m2) | 15,000 | - | Vcc=9V, Ta=25°C, 50% | | | | | Life Time (60 cd/m2) | 25,000 | - | Checkerboard. | | | | 2 | End of lifetime is specified as 50% of initial brightness. The average operating lifetime at room temperature is estimated by the accelerated operation at high temperature conditions. | | | | | | | Product No. | DD-2C16BE-1A | REV. A | |-------------|--------------|--------| | Floduct No. | | | | Page | 39 / 43 | |------|---------| #### 9 HANDLING PRECAUTIONS #### 9.1 HANDLING PRECAUTIONS - 1) Since the display panel is being made of glass, do not apply mechanical impacts such us dropping from a high position. - 2) If the display panel is broken by some accident and the internal organic substance leaks out, be careful not to inhale nor lick the organic substance. - 3) If pressure is applied to the display surface or its neighborhood of the OEL display module, the cell structure may be damaged and be careful not to apply pressure to these sections. - 4) The polarizer covering the surface of the OEL display module is soft and easily scratched. Please be careful when handling the OEL display module. - 5) When the surface of the polarizer of the OEL display module has soil, clean the surface. It takes advantage of by using following adhesion tape. - surface. It takes advantage of by using following adhesion tape. * Scotch Mending Tape No. 810 or an equivalent Never try to breathe upon the soiled surface nor wipe the surface using cloth containing solvent such as ethyl alcohol, since the surface of the polarizer will become cloudy. Also, pay attention that the following liquid and solvent may spoil the polarizer: - * Water - * Ketone - * Aromatic Solvents - 6) Hold OEL display module very carefully when placing OEL display module into the system housing. Do not apply excessive stress or pressure to OEL display module. And, do not over bend the film with electrode pattern layouts. These stresses will influence the display performance. Also, secure sufficient rigidity for the outer cases. - 7) Do not apply stress to the LSI chips and the surrounding molded sections. - 8) Do not disassemble nor modify the OEL display module. - 9) Do not apply input signals while the logic power is off. - 10) Pay sufficient attention to the working environments when handing OEL display modules to prevent occurrence of element breakage accidents by static electricity. - * Be sure to make human body grounding when handling OEL display modules. - * Be sure to ground tools to use or assembly such as soldering irons. - * To suppress generation of static electricity, avoid carrying out assembly work under dry environments. | Product No. | DD-2C16BE-1A | REV. A | Dogo | 10 / 12 | |-------------|--------------|--------|------|---------| | Product No. | | | Page | 40 / 43 | - * Protective film is being applied to the surface of the display panel of the OEL display module. Be careful since static electricity may be generated when exfoliating the protective film. - 11) Protection film is being applied to the surface of the display panel and removes the protection film before assembling it. At this time, if the OEL display module has been stored for a long period of time, residue adhesive material of the protection film may remain on the surface of the display panel after removed of the film. In such case, remove the residue material by the method introduced in the above Section 5). - 12) If electric current is applied when the OEL display module is being dewed or when it is placed under high humidity environments, the electrodes may be corroded and be careful to avoid the above. #### 9.2 STORAGE PRECAUTIONS - 1) When storing OEL display modules, put them in static electricity preventive bags avoiding exposure to direct sun light nor to lights of fluorescent lamps, etc. and, also, avoiding high temperature and high humidity environments or low temperature (less than 0°C) environments. (We recommend you to store these modules in the packaged state when they were shipped from Densitron Technologies Plc.) At that time, be careful not to let water drops adhere to the packages or bags nor let dewing occur with them - 2) If electric current is applied when water drops are adhering to the surface of the OEL display module, when the OEL display module is being dewed or when it is placed under high humidity environments, the electrodes may be corroded and be careful about the above. #### 9.3 DESIGNING PRECAUTIONS - 1) The absolute maximum ratings are the ratings which cannot be exceeded for OEL display module, and if these values are exceeded, panel damage may be happen. - 2) To prevent occurrence of malfunctioning by noise, pay attention to satisfy the VIL and VIH specifications and, at the same time, to make the signal line cable as short as possible. - 3) We recommend you to install excess current preventive unit (fuses, etc.) to the power circuit (VDD). (Recommend value: 0.5A) - 4) Pay sufficient attention to avoid occurrence of mutual noise interference with the neighboring devices. - 5) As for EMI, take necessary measures on the equipment side basically. - 6) When fastening the OEL display module, fasten the external plastic housing section. - 7) If power supply to the OEL display module is forcibly shut down by such errors as taking out the main battery while the OEL display panel is in operation, we cannot guarantee the quality of this OEL display module. - 8) The electric potential to be connected to the rear face of the IC chip should be as follows: US2066 - * Connection (contact) to any other potential than the above may lead to rupture of the IC. | Product No. | DD-2C16BE-1A |
REV. A | Dogo | 41 / 43 | |-------------|--------------|--------|------|---------| | Product No. | | | Page | 41 / 43 | #### 9.4 OTHER PRECAUTIONS - 1) When an OEL display module is operated for a long of time with fixed pattern may remain as an after image or slight contrast deviation may occur. Nonetheless, if the operation is interrupted and left unused for a while, normal state can be restored. Also, there will be no problem in the reliability of the module. - 2) To protect OEL display modules from performance drops by static electricity rapture, etc., do not touch the following sections whenever possible while handling the OEL display modules. - * Pins and electrodes - * Pattern layouts such as the FPC - 3) With this OEL display module, the OEL driver is being exposed. Generally speaking, semiconductor elements change their characteristics when light is radiated according to the principle of the solar battery. Consequently, if this OEL driver is exposed to light, malfunctioning may occur. - * Design the product and installation method so that the OEL driver may be shielded from light in actual usage. - * Design the product and installation method so that the OEL driver may be shielded from light during the inspection processes. - 4) Although this OEL display module stores the operation state data by the commands and the indication data, when excessive external noise, etc. enters into the module, the internal status may be changed. It therefore is necessary to take appropriate measures to suppress noise generation or to protect from influences of noise on the system design. - 5) We recommend you to construct its software to make periodical refreshment of the operation statuses (re-setting of the commands and re-transference of the display data) to cope with catastrophic noise. | Product No. | DD-2C16BE-1A | REV. A | |-------------|--------------|--------| | Floduct No. | | | | Page | 42 / 43 | |------|---------| |------|---------| ## 10 SUPPORTED ACCESSORIES #### **10.1 DUO KIT** Densitron has developed an easy to use yet powerful development and demonstration tool for driving its range of Passive Matrix OLED displays from the USB port of a PC. DUO (Densitron USB OLED) kit is hot pluggable and does not require extra cables or power supply to run, allowing users to be up and running in minutes. The kit consists of an OLED display with transition Board, USB controller card, mini USB cable and a CD with software application and drivers. Part number: PDK-N-2C16BE-1A #### 10.2 TRANSITION BOARD CARD A Transition board card is like a daughterboard which is meant to be a circuit board for connections between the baseboards (DUO). It has connector pins for interfacing between the display and the baseboards. It also includes the OLED display. **Part number: PDT-N-2C16BE-1A** #### 10.3 CONNECTOR BOARD CARD A Connector board card is also a daughterboard which is a circuit board for connection between a microprocessor or microcontroller (customer's system). Part number: EVK-CONNECT-029 #### 10.4 CONNECTOR Type: hot bar soldering process No. of connections: 33 Pitch: 0.70mm #### 10.5 APPLICATION NOTES AND EXAMPLE CODES #### On request to Densitron | Droduct No. | DD-2C16BE-1A | REV. A | Dogo | 12 / 12 | |-------------|--------------|--------|------|---------| | Product No. | | | Page | 43 / 43 |