MLCC X5R/X7R Series approval sheet

Multi-Layer Ceramic Capacitor

General introduction:

Ceramic capacitors (or condenser) are widely used in electronic circuitry for coupling, de-coupling and in filters. These different functions require specific capacitor properties. Ceramic capacitors can be divided into two classes,

• Class 1

In these capacitors dielectric materials are used which have a very high specific resistance, very good Q and linear temperature dependence.

They are used in such applications as oscillators and filters where low losses, capacitance drift compensation and high stability are required.

Class 2

These capacitors have higher losses and have non-linear characteristics. They are used for coupling and de-coupling.

■ Construction:

The capacitance of a ceramic capacitor depends on the area of the electrodes (A), the thickness of the ceramic dielectric (t) and the dielectric constant of the ceramic material (ε _r); and on the number of dielectric layers (n) with multi-layer ceramic capacitors :

 $\mathbf{C} = \varepsilon_{\rm r} \times \varepsilon_{\rm 0} \times \mathrm{A/t} \times \mathrm{n}$

The standard capacitance unit is the "Farad". A capacitor has capacitance of one farad is when one coulomb charges two parallel conductive plate to one volt potential.

The rated voltage is dependent on the dielectric strength, which is mainly governed by the thickness of the dielectric layer and the ceramic structure. For this reason a reduction of the layer thickness is limited. Figure 1 shows the construction of a multi-layer capacitor.

The electrodes are normally mixed palladium with silver since the electrodes are applied before the ceramic is fired at a temperature where silver would oxidize.

Manufacturing of ceramic capacitors

The raw materials are finely milled and carefully mixed. Thereafter the powders are calcined at temperatures between 1100° C and 1300° C to achieve the required chemical composition.

Then, the resultant mass is reground and dopes and/or sintering means are added.

The finely ground material is mixed with a solvent and binding matter. Casting or rolling obtains thin sheets. For multi-layer capacitors electrode material is printed on the sheets and after stacking and pressing of the sheets co-fired with the ceramic compact at temperatures between 1000° C and 1400° C.

The totally enclosed electrodes of a multi-layer capacitor guarantee good life test behavior as well.

G

Multi-Layer Ceramic Capacitor

Operating Voltage

The operating voltage for the capacitors must always be lower than its rated voltage. If an AC voltage is applied, the peak voltage should be lower than the rated voltage of the capacitor. And if both AC and a pulse voltage may be presented, then the sum of the peak should also be lower than the rated voltage of the capacitor chosen.

E Standard Number

E 3	1.0				2.2					4.7														
E 6	1.0 1.5		.5		2.2			3.3		4.7			6.8											
E12	1.	0	1.	2	1.	5	1.	.8	2.	.2	2	.7	3.	3	3	.9	4.	7	5	.6	6	.8	8.	.2
E24	1.0	1.1	1.2	1.3	1.5	1.6	1.8	2.0	2.2	2.4	2.7	3.0	3.3	3.6	3.9	4.3	4.7	5.1	5.6	6.2	6.8	7.5	8.2	9.1

* Non-standard capacitance is available on request.

Available Tolerance

то	Conseitance *	Standard Talaranaa	Available Tolerance
1. 0.	Capacitance	Standard Tolerance	on Request
	0	C = ± 0.25pF	
	Cap < 5p⊦	D = ± 0.5pF	B = ± 0.1pF
			$B = \pm 0.1 pF$
NP0 (C0G)	$5pF \leq Cap < 10pF$	D = ± 0.5pF	C = ± 0.25pF
	Cap \geq 10pF	$J = \pm 5\%$	F = ± 1%
	E12	K = ±10%	$G = \pm 2\%$
X5R		K = ± 10%	
X7R	E6	M = ± 20%	$J=\pm5\%$
Y5V	E3	Z = -20% to +80%	M = ± 20%

* Non-standard capacitance is available on request.

Multi-Layer Ceramic Capacitor

Physical Outline

	Material Type	Temperature C	Compensation	High Permittivity				
Code		Clas	ss I	Class II				
	Elements	NME*	BME*	NME*	BME*			
1	Dielectric	TiO ₂	CaZrO₃	BaTiO₃	BaTiO₃			
2	Electrode	PdAg	Ni	PdAg	Ni			
3		Ag	Cu	Ag	Cu			
4	Termination**	Ni						
5		Sn						

* NME (Nobel Metal Electrode), BME (Base Metal Electrode)

** All Darfon's MLCC products are produced under lead-free plating process and in compliance with the lead-free requirement of Green Plan and ROHS.

C-G1-7-00

Multi-Layer Ceramic Capacitor

Dimensions

TYPICAL TOLERANCE

SIZE CODE	L	W	Т	g	Α	LINIT
(EIA)	(Length)	(Width)	(Max Thickness)	(Min)	(Termination Min/Max)	UNIT
0603	0.6+/-0.03	0.3+/-0.03	0.33	0.15	0.10/0.20	mm
(0201)	(0.024+/-0.001)	(0.012+/-0.001)	(0.013)	(0.006)	(0.004/0.008)	(inch)
1005	1.0 +/- 0.05	0.5 +/- 0.05	0.55	0.30	0.10 / 0.30	mm
(0402)	(0.040 +/- 0.002)	(0.020 +/- 0.002)	(0.022)	(0.012)	(0.004 / 0.012)	(inch)
1608	1.6 +/- 0.10	0.8 +/- 0.10	0.90	0.50	0.25 / 0.65	mm
(0603)	(0.063 +/- 0.004)	(0.031 +/- 0.004)	(0.035)	(0.020)	(0.010 / 0.026)	(inch)
2012	2.0 +/- 0.15	1.25 +/- 0.20	1.45	0.70	0.25 / 0.75	mm
(0805)	(0.079 +/- 0.006)	(0.049 +/- 0.008)	(0.057)	(0.028)	(0.010 / 0.030)	(inch)
3216	3.2 +/- 0.15	1.6 +/- 0.20	1.80	1.50	0.25 / 0.75	mm
(1206)	(0.126 +/- 0.006)	(0.063 +/- 0.008)	(0.069)	(0.060)	(0.010 / 0.030)	(inch)
3225	3.2 +/- 0.20	2.5 +/- 0.20	2.70	1.50	0.25 / 0.75	mm
(1210)	(0.126 +/- 0.008)	(0.098 +/- 0.008)	(0.106)	(0.060)	(0.010 / 0.030)	(inch)

SPECIAL TOLERANCE

SIZE CODE	L	W	т	g	А	
(EIA)	(Length)	(Width)	(Max Thickness)	(Min)	(Termination Min/Max)	UNIT
1005*	1.0 +/- 0.15	0.5 +/- 0.15	0.65	0.30	0.10 / 0.30	mm
(0402)	(0.040 +/- 0.006)	(0.020 +/- 0.006)	(0.026)	(0.012)	(0.004 / 0.012)	(inch)
1608*	1.6 + 0.15/-0.1	0.8 + 0.15/-0.1	0.95	0.50	0.25 / 0.65	mm
(0603)	(0.063 +0.006/- 0.004)	(0.031 +0.006/-0.004)	(0.037)	(0.020)	(0.010 / 0.026)	(inch)
2012*	2.0 +/- 0.20	1.25 -0.20/+0.30	1.55	0.70	0.25 / 0.75	mm
(0805)	(0.079 +/- 0.008)	(0.049 -0.008/+0.012)	(0.061)	(0.028)	(0.010 / 0.030)	(inch)
3216*	3.2 +/- 0.20	1.6 -0.20/+0.30	1.90	1.50	0.25 / 0.75	mm
(1206)	(0.126 +/- 0.008)	(0.063 -0.008/+0.012)	(0.075)	(0.060)	(0.010 / 0.030)	(inch)
3225*	3.2 +/- 0.30	2.5 +/- 0.30	2.80	1.50	0.25 / 0.75	mm
(1210)	(0.126 +/- 0.012)	(0.098 +/- 0.012)	(0.11)	(0.060)	(0.010 / 0.030)	(inch)

Multi-Layer Ceramic Capacitor

DARFON Part Number

						<u>c</u>	<u>2 1005</u>	<u>NP0</u>	<u>101</u>	<u>J G</u>	<u>T S</u>
PRODUCT C = Capac	CODE										
SIZE in mm	(EIA CO	DE, in	inch) –								
0402(01005) 3216 (1206)	0603(02 3225(12	:01) 210)	1005 (04 4520 (1	402) 1608 808) 4532	3 (0603) 2 (1812)	2012 (080)5)				
т. с. —											
NP0: 0 ± 30pp X7R: ±15% X5R: ±15% Y5V: +22%/-8	om/℃ 82%	-55℃ to -55℃ to -55℃ to -30℃ to	o +125℃ o +125℃ o +85℃ o +85℃								
CAPACITAN		Е —									
Expressed in First two digits Last digit spe- (Use 9 for 1.0 (Example: 2.2	pico-farads s represent cifies the n through 9. 2pF=229 or	and id signific umber o 9pF; 0.47pF	entified b cant figure of zeros. Use 8 for =478)	y a three-di es. · 0.2 through	git number. n 0.99pF)						
TOLERANC	E CODE									l	
A: ± 0.05pF J: ±5%	B: ± K: ±′	0.1pF 10%	C: ± 0 M: ±2	.25pF 0%	D: ± 0.5p Z: +80/-2	F F: 1 0%	:1% G	: ± 2%			
VOLTAGE C	ODE —										
B: 4V J: 200V	C: 6.3V K: 250V	D	: 10V : 500V	E: 16V M: 630V	F: 25V P: 1KV	N: 35V Q: 2KV	G: 50V R: 3KV	H: 1 S: 4	00V KV		
PACKAGIN	G CODE										
T: Paper tape N: Paper tape A: Paper tape B: Bulk, loose W: Special Pa	reel Ø180 e reel Ø250 e reel Ø330 ed in bag acking	mm (7") mm (10 mm (13))") 3")		P: Embos D: Embos E: Embos C: Bulk c	ssed tape ree ssed tape ree ssed tape ree assette	el Ø180mm el Ø250mn el Ø330mm	n (7") n (10") n (13")			
Product Typ)e										

S: Standard Ceramic Capacitor

Q: High Q/Low ESR

C-G1-7-00

Multi-Layer Ceramic Capacitor

• NP0 (Class I)

Тур	be		Size								
T.C.	RV	0603 (0201)	1005 (0402)	1608 (0603)	2012 (0805)	3216 (1206)					
	16V			2.7nF~3.3nF		12nF~39nF					
NPO	25V	0.20pF~100pF	0.20pF~22pF								
Class I	50V	0.20pF~18pF	0.20pF~470pF/1nF	0.20pF~2.2nF	0.50pF~10nF	1.50pF~10nF					
	100V		0.20pF~220pF	0.20pF~1nF	0.50pF~3.3nF	1.50pF~4.7nF					

• X7R (Class II)

Туре				Size	•		
T.C.	RV	0603 (0201)	1005 (0402)	1608 (0603)	2012 (0805)	3216 (1206)	3225 (1210)
	6.3V				4.7uF~10uF		
X7R	10V	3.3nF/4.7nF/10nF	100pF~100nF	100pF~1uF	1uF/2.2uF/4.7uF/10uF	2.2uF	
Class II	16V		100pF~100nF 100pF~1u		330nF/470nF/1uF/ 2.2uF	470nF~10uF	10uF
	25V	100pF~2.2nF	100pF~22nF	100pF~1uF	1nF~1uF	220nF~4.7uF	4.7uF/10uF
	50V	100pF~2.2nF	100pF~10nF	100pF~100nF	150pF~470nF	1nF~1uF	
	100V			100pF~10nF	150pF~22nF	1nF~100nF	

• X5R (Class II)

Ту	ре	Size										
T.C.	RV	0603 (0201) 1005 (0402)		1608 (0603)	2012 (0805)	3216 (1206)	3225 (1210)					
	6.3V	2.2nF~220nF	470nF~4.7uF	2.2uF/ 4.7uF/10uF	4.7uF~22uF	22uF/47uF	47uF/100uF					
X5R	10V	2.2nF~100nF	15nF~1uF	220nF~4.7uF	2.2uF~10uF	2.2uF~10uF	22uF					
Class	16V		15nF~1uF	220nF~2.2uF	1uF~10uF	2.2uF~10uF	4.7uF~22uF					
11	25V		100nF	220nF/1uF	1uF~4.7uF	2.2uF~10uF	4.7uF/ 10uF					

• Y5V (Class II)

Туре		Size							
T.C.	RV	0603 (0201)	1005 (0402)	1608 (0603)	2012 (0805)				
	6.3V	22nF~100nF	10nF~1uF	10nF~2.2uF					
	10V		10nF~1uF	10nF~2.2uF					
Y5V	16V		10nF~220nF	10nF~2.2uF	100nF~2.2uF				
Class II	25V		10nF~100nF	10nF~330nF	100nF ~2.2uF				
	50V		10nF~33nF	10nF~220nF	100nF~1uF				

Note : (1) Other size, capacitance, and voltage are available upon customer's request.

(2) Product range might be extended due to technology improvement or new product released ; for up-to-date information,

please contact our sales.

(3) Part of Y5V product will be phased out.

C-G1-7-00

Multi-Layer Ceramic Capacitor

Packaging

• Tape and Reel Packaging

Tape and reel packaging is currently the most promising system for high-speed production. A typical 180mm (7 inch) diameter reel contains 1,500 to 15,000 capacitors, 250mm (10 inch) contains 10,000 capacitors, and 330mm(13 inch) contains 10,000 to 50,000 capacitors. Three standard sizes are available in taped and reeled package either with paper carrier tapes or embossed tapes.

• Reel Specifications

TAPE WIDTH	G	T max.	D
(mm)	(mm)	(mm)	(mm)
8	10.0 +/- 1.5	14.5	180
8	10.0 +/- 1.5	14.5	250
8	10.0 +/- 1.5	14.5	330
12	14.0 +/- 1.5	18.5	180

Multi-Layer Ceramic Capacitor

• Paper Tape Specifications

	PRODUCT SIZE CODE										
SYMBOL	0603 (0201)		1005	1005 (0402)		(0603)	2012	(0805)	3216 (1206)		UNIT
	SIZE	TOL.	SIZE	TOL.	SIZE	TOL.	SIZE	TOL.	SIZE	TOL.	
A	0.38	+/- 0.04	0.60	+/- 0.04	1.0	+/- 0.2	1.5	+/- 0.2	1.9	+/- 0.2	mm
В	0.68	+/- 0.04	1.12	+/- 0.04	1.8	+/- 0.2	2.3	+/- 0.2	3.6	+/- 0.2	mm
F	3.50	+/- 0.05	3.50	+/- 0.05	3.5	+/- 0.05	3.5	+/- 0.05	3.5	+/- 0.05	mm
Р	2.00	+/- 0.10	2.00	+/- 0.10	4.0	+/- 0.1	4.0	+/- 0.1	4.0	+/- 0.1	mm
w	8.00	+/- 0.20	8.00	+/- 0.20	8.0	+/- 0.2	8.0	+/- 0.2	8.0	+/- 0.2	mm

C-G1-7-00

Multi-Layer Ceramic Capacitor

• Embossed Tape Specifications

 k_o : so chosen that the orientation of the component cannot change. For W= 8mm: T₂=2.5mm max.

For W= 12mm: T_2 = 4.5mm

		PRO	DUCT SIZE CO	DDE		
DIMENSION		4 mm tape		8 mm	tape	TOLERANCE
(mm)	2012 (0805)	3216 (1206)	3225 (1210)	4520 (1808)	4532 (1812)	(m m)
P ₁	4	4	4	8	8	+/- 0.10
Po	4	4	4	4	4	+/- 0.10
P ₂	2	2	2	2	2	+/- 0.05
A ₀ nominal clearance*	0.2	0.3	0.3	0.4	0.4	-
B₀ nominal clearance*	0.2	0.3	0.3	0.4	0.4	-
K₀ minimum clearance*	0.05	0.05	0.05	0.05	0.05	-
w	8.0	8.0	8.0	12.0	12.0	+/- 0.20
E	1.75	1.75	1.75	1.75	1.75	+/- 0.10
F	3.5	3.5	3.5	5.5	5.5	+/- 0.05
Do	1.5	1.5	1.5	1.5	1.5	+0.1/-0.0
D ₁	1 min	1 min	1 min	1.5 min	1.5 min	+0.1/-0.0
т	0.25	0.25	0.25	0.25	0.25	+/- 0.10
T ₁	0.05	0.05	0.05	0.05	0.05	+/- 0.01
T ₂	2.5 max.	2.5 max.	2.5 max.	4.5	4.5	-

* Typical capacitors displace in pocket.

C-G1-7-00

Multi-Layer Ceramic Capacitor

• Thickness and Taping Amount

	Thistory	Amount per reel									
	Inickness		180	mm (7")	250	mm (10")	330	mm (13")			
Code	Spec	Size(EIA)	Paper	Embossed	Paper	Embossed	Paper	Embossed			
Α	0.30+/-0.03	0603 (0201)	15K								
В	0.50+/-0.05	1005 (0402)	10K				50K				
<u>B</u>	0.50+/-0.15	1005 (0402)	10K				50K				
Q	0.45+/-0.05	1005 (0402)	10K				50K				
C	0.60+/-0.15	2012 (0805)	4K		10K		15K				
C	0.00+/-0.13	3216(1206)	4K		10K		15K				
Q	0.45+/-0.05	1608(0603)	4K		10K		15K				
D	0.80+/-0.10	1608(0603)	4K		10K		15K				
<u>D</u>	0.80+0.15/ -0.10	1608 (0603)	4K		10K		15K				
		2012 (0805)	4K		10K		15K				
F	0.85±/-0.15	3216 (1206)	4K		10K		15K				
	0.00+/-0.10	3225 (1210)		3K				10K			
		4532 (1812)		1K							
	0.051/0.15	2012(0805)		3K							
I	0.95+/-0.15	3216(1206)		3K							
	1 151/0 20	3216 (1206)		3K				10K			
Г	1.10+/-0.20	4520 (1808)		3K							
		2012 (0805)		2K/3K				10K			
		3216 (1206)		3K				10K			
G	1.25 +/-0.20	3225 (1210)		3K							
		4520(1808)		3K							
		4532(1812)		1K							
		2012(0805)		2K/3K				10K			
<u>G</u>	1.25+0.3/-0.2	3216(1206)		3K				10K			
		3225(1210)		3K							
		3216(1206)		2K							
	1 60 1 0 20	3225(1210)		2K							
L .	1.00+/-0.20	4520(1808)		2K							
		4532(1812)		1K							
		3216(1206)		2K							
	1 60 0 20/ 0 20	3225(1210)		2K							
느	1.00+0.30/-0.20	4520(1808)		2K							
		45321812)		1K							
		3216 (1206)		2K/3K							
N	2 004/0 20	3225 (1210)		2K							
IN	2.00+/-0.20	4520 (1808)		1K							
		4532(1812)		1K							
N	2.00+/-0.30	3225 (1210)		2K							
Р	2.50+/-0.20	3225(1210)		500pcs/1K							
P	2.50+/-0.30	3225(1210)		500pcs/1K							

Multi-Layer Ceramic Capacitor

• Peeling Off Force

Peeling off force: 0.1N to 1.0N in the direction shown below.

The peeling speed: 300+/-10 mm/min

Peeling force 165 ° to 180° Top tape 14 Base tape

- 1. The taped tape on reel is wound clockwise. The sprocket holes are to the right as the tape is pulled toward the user.
- 2. There are minimum 150 mm as the leader and minimum 40 mm empty tape as the tail be attached to the end of the tape.

Multi-Layer Ceramic Capacitor

X5R, X7R Dielectrics

Features

- A monolithic structure ensures high reliability and mechanical strength.
- High capacitance density.
- A wide range of capacitance values in standard case size.
- Suitable for high speed SMT placement on PCBs.
- Ni barrier termination highly resistance to migration.
- Lead-free termination is in compliance with the requirement of green plan and ROHS.

Applications

- General electronic equipment.
- Communication equipment.
- Custom Application

■ X5R, X7R Dielectric Characteristics

Capacitance Range	100pF	to 100uF				
Size (mm)	0603	1005	1608	2012	3216	3225
(EIA inch)	(0201)	(0402)	(0603)	(0805)	(1206)	(1210)
Test Voltage	1.0 ± 0	.2Vrms				
Test Frequency	1.0 ± 0	.2KHz				
Capacitance Tolerance	± 10%,	± 20% (±	5% avail	able on re	quest)	
Operating Temperature Range	-55° ℃	to +85℃ fo	or X5R			
	-55° ℃	to +125℃	for X7R			
Maximum Capacitance Change	± 15 %					
Rated Voltage	6.3, 10	, 16, 25, 50), 100 VI	C		
Dissipation Factor	Pls refe	er to DF tal	ble on pa	ige No. 7		
Insulation Resistance (+25°C, RVDC)	10,000	$M\Omega$ min. c	or 500Ω-l	= min., wł	ichever is	s smaller
Insulation Resistance (Maximum	1,000	$M\Omega$ min. or	50Ω-F n	nin., whicl	never is s	maller
operating temperature, RVDC)						

Multi-Layer Ceramic Capacitor

Product Range and Thickness

CLASS													Cl	ass II													
TYPE													Sta	ndarc	1												
SIZE		06	03			1	005				1608	5	,				2012						32	216		32	25
(EIA)		02	01			0	402				0603						0805			_			12	206		12	10
RV	10V	16V	25V	50V	10V	16V	25V	50V	10V	16V	25V	50V	100V	6.3V	10V	16V	25V	'	50V	100V	10V	16V	25V	50V	100V	16V	25V
100 p			A	A	B	B	B	B	D	D	D		D	-			-	_									
150 p			A	A	B	B	B	B	D	D	D	D	D					+	CE	E							
180 p			Α	Α	В	В	В	В	D	D	D	D	D						CE	Е							
220 p			Α	Α	В	В	В	В	D	D	D	D	D						CE	Е							
270 p			A	A	B	B	B	B	D	D	D	D	D						CE	E							
330 p			A	A	B	B	B	B	D	D	D		D					+		E							
470 p			A	A	B	B	B	B	D	D	D	D	D						CE	E							
560 p			Α	Α	В	В	В	В	D	D	D	D	D						CE	Е							
680 p			Α	Α	В	В	В	В	D	D	D	D	D						CE	Е							
820 p			A	A	В	В	В	В	D	D	D	D	D					_	CE	E				_	_		
1.0 n			A	A	B	B	B	B	D	D	D	D	D	-			CI		CE	E				E	E		
1.2 II 1.5 n			A	A	B	B	B	B	D	D	D	D	D					-		F				F	F		
1.8 n			A	A	B	B	B	B	D	D	D	D	D	-			CI		CE	E				E	E		
2.2 n			Α	Α	В	В	В	В	D	D	D	D	D				C	Ξ	CE	Е				E	E		
2.7 n					В	В	В	В	D	D	D	D	D				CI		CE	E				E	E		
3.3 n	A			-	В	B	В	В	D	D	D	D	D	-			CI		CE	E				E	E		
4.7 n	А			-	B	B	B	B	D	D	D	D	D	-					CE	E				E	E		
5.6 n					В	В	В	В	D	D	D	D	D				CI	Ξ	CE	Е				Е	Е		
6.8 n					В	В	В	В	D	D	D	D	D				CI	Ξ	CE	E				E	E		
8.2 n	•				В	В	В	В	D	D	D	D	D				CI	-	CE	E				E	E		
10 n	A				B	B	B	в	D	D	D	D	D					-		F				F	F		
15 n					B	B	B		D	D	D	D					C	=	CE	E				E	E		
18 n					В	В	В		D	D	D	D					CI	Ξ	CE	Е				Е	Е		
22 n					В	B	В		D	D	D	D					CI		CE	E				E	E		
27 n 33 n				-	B	B			D	D	D	D*		-				-	C E					F	F		
39 n					B	B			D	D	D	<u>D</u> *					CI		CE					E	E		
47 n					В	В			D	D	D	<u>D</u> *					Ē		Ē					E	E		
56 n				-	В	B			D	D	D	<u>D</u> *	-	-			E	_	<u>E</u>					E	E		
82 n					B	B			D	D	D	<u>D</u> *					F	+	F					F	FG		
100 n					В	В			D	D	D	D*					E		E					E	E G		
120 n							1										E		Е								
150 n																	E		Е								
180 n									P	P	D*						E	+	E		<u> </u>						
270 n				1					U	U							_	+	<u> </u>		-			1			
330 n									<u>D</u> *	<u>D</u> *						G	G	+	G				Ι	G			
390 n																											
470 n									<u>D</u> *	<u>D</u> *						G	G	_	G			G	G	Ŀ			
680 n																		+									
820 n																		+									
1.0 u									<u>D</u> *	<u>D</u> *	<u>D</u> *				G	G	G					G	G	G <u>L</u>			
1.2 u																		Ţ									
1.5 u																		+		+	-						
2.2 u							<u> </u>								G	G		+		+	L	L	L				
2.7 u						<u>.</u>																					
3.3 u					\square													_									
3.9 u														G	G			+			-	-	1				N
10 u														G	3			+		+		L				N	N

-

S 2

Non-standard capacitance or thickness is available on request

• * Special length/width tolerance

• The thickness might be changed due to technology improvement.

Multi-Layer Ceramic Capacitor

Product Range and Thickness

CLAS						-						С	lass II									
TYPE												Sta	andard									
T.C.													X5R									
SIZE	060	03		100	5			16	808				2012			32	16			32	25	
(EIA)	020	01		040	2			06	603				0805			12	06			12	10	
RV	6.3V	10V	6.3V	10V	16V	25V	6.3V	10V	16V	25V	6.3V	10V	16V	25V	6.3V	10V	16V	25V	6.3V	10V	16V	25V
2.2 n	Α	Α																				
3.3 n	Α	А																				
4.7 n	Α	Α																				
5.6 n	Α	Α																				
6.8 n	A	Α																				
8.2 n	Α	Α																				
10 n	Α	Α																				
15 n				В	В																	
22 n	Α	Α		В	В																	
33 n				В	В																	
47 n	A	A		В	В																	
56 n				В	В																	
68 n				В	В																	
82 n				В	В																	
100 n	A	A		В	В	В																
120 n				В	В																	
150 n				В	B																	
180 n				В	В				_	_												
220 n	A			В	В			D	D	D												
270 n								5	5										-			
330 n								D	D													
390 h			D	D				D	D													
470 fi			в	Б				D	D													
680 n								Р	Р													
820 n								D	D													
1.0.1			D	P	D				Р	Р			FG	E G								
1.0 u			D	D					D	D												
1.8 u																						
2211			В				D	D	D			F	G	G		1	1	1				
2.7 u							_						-									
3.3 u																						
3.9 u																						
4.7 u			<u>B</u> *				D	D			G	G	G	G		L	L	L			N	Ν
6.8 u			_													_						_
10 u							D*				G	G	G			L	L	L			Ν	Ν
22 u											G	-	-		L					N P	N P	_
47 u															L				P			
100 u															_				P			

Non-standard capacitance or thickness is available on request • •

The thickness might be changed due to technology improvement.

• * Special length/width tolerance

Thickness Tolerance

Thick	ickness (mm) Thickness (mm)		mess (mm)	Thick	ness (mm)	Thick	ness (mm)	Thick	(mm)	Thickness (mm)		
Code	Class	Code	Class	Code	Class	Code	Class	Code	Code	Code	Code	
Α	0.30+/-0.03	С	0.60+/-0.15	Е	0.85+/-0.15	G	1.25 -0.20/+0.30	L	1.60+0.3/-0.20	Р	2.50+/-0.20	
В	0.50+/-0.05	D	0.80+/-0.10	F	1.15+/-0.20	1	0.95+/-0.15	Ν	2.00+/-0.20	Q	0.45+/-0.05	
B	0.50+/-0.15	D	0.8+0.15/-0.1	G	1.25+/-0.20	L	1.60+/-0.20	N	2.00+/-0.30			

Special Length/Width Tolerance

opeena _enga					
Size Code(EIA)	1005(0402)	1608(0603)	2012(0805)	3216(1206)	3225(1210)
Length(mm)	1.0 ± 0.15	1.6 ± 0.15	2.0 ± 0.20	3.2 ± 0.20	3.2 ± 0.30
Width(mm)	0.5 ± 0.15	0.8 ± 0.15	1.25 ± 0.30	1.6 ± 0.30	2.5 ± 0.30

C-S2-7-00

Multi-Layer Ceramic Capacitor

Taping Amount

	Thickness				Amou	int per reel		
	Thickness	j	180	mm (7")	250	mm (10")	330	mm (13")
Code	Spec	Size(EIA)	Paper	Embossed	Paper	Embossed	Paper	Embossed
Α	0.30+/-0.03	0603 (0201)	15K					
В	0.50+/-0.05	1005 (0402)	10K				50K	
B	0.50+/-0.15	1005 (0402)	10K				50K	
Q	0.45+/-0.05	1005 (0402)	10K				50K	
C	0.60+/.0.15	2012 (0805)	4K		10K		15K	
C	0.00+/-0.15	3216(1206)	4K		10K		15K	
Q	0.45+/-0.05	1608(0603)	4K		10K		15K	
D	0.80+/-0.10	1608(0603)	4K		10K		15K	
<u>D</u>	0.80+0.15/ -0.10	1608 (0603)	4K		10K		15K	
		2012 (0805)	4K		10K		15K	
	0.95+/ 0.15	3216 (1206)	4K		10K		15K	
	0.00+/-0.10	3225 (1210)		3K				10K
		4532 (1812)		1K				
	0.05+/.0.15	2012(0805)		3K				
1	0.95+/-0.15	3216(1206)		3K				
E	1 15+/ 0 20	3216 (1206)		3K				10K
Г	1.15+/-0.20	4520 (1808)		3K				
		2012 (0805)		2K/3K				10K
		3216 (1206)		3K				10K
G	1.25 +/-0.20	3225 (1210)		3K				
		4520(1808)		3K				
		4532(1812)		1K				
		2012(0805)		2K/3K				10K
<u>G</u>	1.25+0.3/-0.2	3216(1206)		3K				10K
		3225(1210)		3K				
		3216(1206)		2K				
	1 60+/ 0 20	3225(1210)		2K				
L	1.0017-0.20	4520(1808)		2K				
		4532(1812)		1K				
		3216(1206)		2K				
	1 60+0 30/ 0 20	3225(1210)		2K				
<u> </u>	1.00+0.30/-0.20	4520(1808)		2K				
		45321812)		1K				
		3216 (1206)		2K/3K				
N	2 00+/ 0 20	3225 (1210)		2K				
	2.0017-0.20	4520 (1808)		1K				
		4532(1812)		1K				
<u>N</u>	2.00+/-0.30	3225 (1210)		2K				
Р	2.50+/-0.20	3225(1210)		500pcs/1K				
Р	2.50+/-0.30	3225(1210)	1	500pcs/1K				

C-S2-7-00

4

Multi-Layer Ceramic Capacitor

■ X5R, X7R Specifications

	Item	Specification	Test Method
1	Operating Temperature Range	X7R: -55 to 125 degree C	
		X5R: -55 to 85 degree C	
2	Rated Voltage	6.3VDC, 10VDC, 16VDC, 25VDC, 35VDC, 50VDC, 100VDC,	The rated voltage is defined as the maximum voltage, which may be applied continuously to the capacitor.
3	Appearance	No defects or abnormalities.	Visual inspection
4	Dimensions	Within the specified dimension.	Using calipers
5	Dielectric Strength	No defects or abnormalities.	No failure shall be observed when 250%* of the rated voltage is applied between the terminations for 1 to 5 seconds. The charge and discharge current is less than 50mA.
6	Insulation Resistance (I.R.)	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	The insulation resistance shall be measured with a DC voltage not exceeding the rated voltage at 25 $^\circ\!C$ and 75%RH max, and
		Rated Voltage: ≧500V To apply 500V. (whichever is smaller)	within 1 minute of charging.
7	Capacitance	Within the specified tolerance	The capacitance / D.F. shall be measured at $25^\circ\!\mathbb{C}$ at the
		* X7R, X5R at 1000 hours	frequency and voltage shown in the tables.
8	Q/Dissipation Factor (D.F.)	I. X5R, X7R:	
		See X5R,X7R DF table 3	Item ClassII ClassII * For item in
		Table 1	(≤10 uF) (>10 uF) Table1
		Size Thickness TC RV Cap	Frequency 1.0±0.2KHz 120Hz±24Hz 1.0±0.2KHz Voltage 1.0±0.2Vrms 0.5±0.1Vrms 0.5±0.1Vrms
		0603 0.3 mm X5R 6.3V 104	
		1005 0.5 mm X5R 4V/6.3V 475 1608 0.8 mm X5R 4V/6.3V 106	
9	Capacitance Temperature Characteristics	Capacitance change X7R/X5R within ±15%	The ranges of capacitance change compared with the 25°C value over the temperature ranges shall be within the specified ranges.
10	Termination Strength	No removal of the terminations or marking defect.	Apply a parallel force of 5N to a PCB mounted sample for 10±1sec. *2N for 0603 (EIA 0201).
11	Deflection (Bending Strength)	No cracking or marking defects shall occur at 1mm deflection. Capacitance change: X7R, X5R:within ±12.5%	Solder the capacitor to the test jig (glass epoxy boards) shown in Fig.a using a SAC305(Sn96.5Ag3.0Cu0.5) solder (then let sit for 48±4 hours for X7R X5R and Y5V). Then apply a force in the direction shown in Fig.b. The soldering shall be done with the reflow method and shall be conducted with care so that the soldering is uniform and free of defects such as heat shock.
		$b \neq 4.5$ $b \neq 4.5$ $c \neq 0003 0.3 0.1$ $b \neq c \neq 0.5$ $f = 0.003 0.03 0.1$ $f = 0.003 0.03 0.1$ $f = 0.003 0.03 0.1$ $f = 0.003 0.033 0.1$ $f = 0.003 0.033 0.1$ $f = 0.003 0.033 0.1$ $f = 0.033 0.$	$\begin{array}{c} 20 \\ 9 \\ 9 \\ 50 \\ 5 \\ 0 \\ 5 \\ 0 \\ 1.2 \\ 0 \\ 1.65 \\ 0 \\ 2.0 \\ 0 \\ 2.5 \\ 0 \\ 3.7 \end{array} \xrightarrow{20} Fig. b. \begin{array}{c} 50 \\ Pressurize \\ Pressurize \\ Flexure : 1mm \\ Flex$
12	Solderability of Termination	90% of the terminations are to be soldered evenly and continuously.	Immerse the test capacitor into a methanol solution containing rosin for 3 to 5 seconds, preheat it 150 to 180° for 2 to 3 minutes and immerse it into Sn-3.0Ag-0.5Cu solder of 245 ± 5 $^{\circ}$ C for 3±1seconds.

C-S2-7-00

Multi-Layer Ceramic Capacitor

Continued from previous page.

	lte	m	Specification	Test Method		
13	Resistance to	Appearance	No marking defects	*Preheat the capacitor at 120 to 150°C for 1 minute.		
	Soldering Heat	Cap. Change	X7R/X5R within ±7.5%	solder solution at 270±5℃ for 10±1 seconds. Let sit at room temperature for 24±2 hours (temperature compensating type)		
		Q/D.F.	To satisfy the specified initial spec.	or 48±4 hours (high dielectric constant type), then measure.		
				* Preheat 150 to 200 $^{\circ}$ C for size \geq 3216.		
		I.R.	I.R. \geq 10,000MΩ or R _i C _R \geq 500Ω-F.	Initial measurement : perform a heat treatment at 150+0/-10°C		
			(whichever is smaller)	for one hour and then let sit for 48±4 hours at room temperature. Perform the initial measurement.		
14	Temperature cycle	Appearance	No marking defects	Solder the capacitor to supporting jig (glass epoxy board) and		
	(Thermal shock)	Cap. Change	X7R/X5R within ±7.5%	listed in the following table. Let sit for 24±2hrs at room temperature, then measure.		
		Q/D.F.	To satisfy the specified initial spec.	Step 1: Minimum operating temperature 30±3min		
		I.R.	$I.R. \ge 10,000M\Omega$ or $R_iC_R \ge 500\Omega$ -F.	Step 3: Maximum operating temperature 30±3min		
			(whichever is smaller)	Step 4: Room temperature 2~3min		
				Initial measurement: perform a heat treatment at $150+/-10^{\circ}$ C for an hour and then let sit for 48 ± 4 hours at room temp. Perform the initial measurement.		
15	Humidity load	Appearance	No marking defects	Apply the rated voltage at $40\pm2^\circ\mathbb{C}$ and 90 to 95% humidity for		
		Cap. Change	X7R/X5R within ±12.5%	500±12 hours. Remove and let sit for 24±2 hours (temperature compensating type) or 48±4 hours (high dielectric constant type) at room temperature, then measure.		
		Q/D.F.	X7R 200% max of initial spec.	The charge / discharge current is less than 50mA.		
			X5R 200% max of initial spec.			
		I.R.	I.R. \geq 500M Ω or R _i C _R \geq 25 Ω -F.	Initial measurement: perform a heat treatment at 150+/-10 $^\circ\!\mathrm{C}$		
			(whichever is smaller)	for one hour and then let sit for 48±4hours at room		
			* some of the parts are RiCr \ge 12.5 Ω -F,please refer to table 2	temperature. Perform the initial measurement.		
16	High temperature	Appearance	No marking defects	Apply 200% of the rated voltage for 1000±12 hours at the		
	load life test	Cap. Change	X7R/X5R within ±12.5%	maximum operating temperature \pm 3°C. Let sit for 24 \pm 2 hours (temperature compensating type) or 48 \pm 4 hours (high dielectric constant type) at room temperature, then measure.		
			X7R 200% may of initial value	The charge/discharge current is less than 50mA.		
		G/D.1.		Initial measurement: perform a heat treatment at 150+/-10 $^\circ\!\mathrm{C}$		
			X5R 200% max of initial value	for one hour and then let sit for 48±4hours at room		
		I.R.	More than 1G $\Omega_{\rm Or}~R_iC_r{\geq}50~\Omega\text{-F}$ (whichever is less.)	P.S.: Please refer to table 2 for items applying 150% voltage		
			* some of the parts are RiCr \geq 25Ω-F,please refer to table 2	2 * some of the parts are applicable in rated voltage *1.5. pleas		
				refer to table 2		

Table 2

0603 (EIA 0201): C > 10 nF 1005 (EIA 0402): C > 0.1 uF 1608 (EIA 0603): C > 1.0 uF	TC	Product Range
X5R $1008 (EIA 0003): C \ge 1.0 uI$ 2012 (EIA 0805): C $\ge 2.2 uF$ 3216 (EIA 1206): C $\ge 10 uF$ 3225 (EIA 1210): C $\ge 22 uF$	X5R	$\begin{array}{l} 1000000000000000000000000000000000000$

C-S2-7-00

6

Multi-Layer Ceramic Capacitor

■ X5R/X7R DF (tan δ) Table 3

Potod Voltage	Size	Consoltanoo	D.F Max.			
Raleu vollage	3120	Capachance	X5R	X7R		
4V	All	All	15.0%			
	All	cap ≦1.0uF	10.0%	7.5%		
6.3V	All	1.0uF< cap <4.7uF	10.0%	10.0%		
	All	4.7uF≦ cap ≦100uF	15.0%	15.0%		
	0603/3216/3225	All	7.5%	5.0%		
	0603	100nF≦ cap	10.0%			
		cap ≦100nF	7.5%	5.0%		
	1005	100nF< cap <330nF	7.5%			
		330nF≦ cap	10.0%			
101/		cap ≦1.0uF	7.5%	5.0%		
100	1608	1.0uF< cap <2.2uF	7.5%			
		2.2uF≦ cap	10.0%			
	2012	cap <2.2uF	7.5%	5.0%		
	2012	2.2uF≦ cap	10.0%			
	3216	10uF	10.0%	10.0%		
	3225	10uF< cap ≦22uF	10.0%	10.0%		
	0603/3216/3225	All	5.0%	5.0%		
	1005	cap ≦100nF	5.0%	5.0%		
	1005	100nF< cap ≦220nF	7.5%			
		cap ≦470nF	5.0%	5.0%		
	1608	470nF< cap <1.0uF	7.5%	5.0%		
16V		1.0uF≦ cap	10.0%	10.0%		
		cap ≦2.2uF	5.0%	5.0%		
	2012	2.2uF< cap ≦4.7uF	7.5%			
		4.7uF< cap ≦10uF	10.0%			
	3216	4.7uF< cap	10.0%	10.0%		
	3225	10uF< cap ≦22uF	15.0%			
	All	All	5.0%	3.5%		
		1.0uF≦ cap	10.0%			
25\/	1608	470nF		10.0%		
250	3216	1.0uF< cap ≦4.7u	5.0%	5.0%		
	5210	4.7uF< cap	10.0%			
	3225	4.7uF< cap ≦10u	10.0%			
> 50\/	All	All but below	2.5%	3.0%		
<u>≡</u> 00¥	3216/3225	cap ≦1.0uF	3.5%	3.5%		

Multi-Layer Ceramic Capacitor

Typical Characteristic Curves

- Temperature Coefficient
 - Class 1 (Temperature Compensation series)

C 1

1

Multi-Layer Ceramic Capacitor

C-C1-1-00

• Class 2 (High Dielectric Constant Series)

Capacitance Change vs. DC bias Voltage

Multi-Layer Ceramic Capacitor

Impedance vs. Frequency

C-C1-1-00

Multi-Layer Ceramic Capacitor

C-C1-1-00

C 1

Aging Rate

Multi-Layer Ceramic Capacitor

Application Note

Circuit Design

- Once application and assembly environments have been checked, the capacitor may be used in conformance with the rating and performance, which are provided in both the catalog and the specifications. Exceeding the specifications listed may result in inferior performance. It may also cause a short, open, smoking, or flaming to occur, etc.
- 2. Please use the capacitors in conformance with the operating temperature provided in both the catalog and the specifications. Be especially cautious not to exceed the maximum temperature. In the situation the maximum temperature set forth in both the catalog and specifications is exceeded, the capacitor's insulation resistance may deteriorate, power may suddenly surge and short-circuit may occur. The loss of capacitance will occur, and may self-heat due to equivalent series resistance when alternating electric current is passed through. As this effect becomes critical in high frequency circuits, please exercise with caution. When using the capacitor in a (self-heating) circuit, please make sure the surface of the capacitor remains under the maximum temperature for usage. Also, please make certain temperature rise remain below 20°C.
- 3. Please keep voltage under the rated voltage, which is applied to the capacitor. Also, please make certain the peak voltage remains below the rated voltage when AC voltage is super-imposed to the DC voltage. In the situation where AC or pulse voltage is employed, ensure average peak voltage does not exceed the rated voltage. Exceeding the rated voltage provided in both catalog and specifications may lead to defective withstanding voltage or, in worse case situations, may cause the capacitor to burn out.
- 4. It's is a common phenomenon of high-dielectric products to have a deteriorated amount of static electricity due to the application of DC voltage.

Storage

- 1. The chip capacitors shall be packaged in carrier tapes or bulk cases.
- 2. Keep storage place temperatures from +5 $^\circ \! \mathbb{C}$ to +35 $^\circ \! \mathbb{C}$, humidity from 45 to 70% RH.
- 3. The storage atmosphere must be free of gas containing sulfur and chlorine. Also, avoid exposing the product to saline moisture. If the product is exposed to such atmospheres, the terminations will oxidize and solderability will be affected.
- 4. The solderability is assured for 12 months from our final inspection date if the above storage condition is followed.

Handling

Chip capacitors should be handled with care to avoid contamination or damage. The use of vacuum pick-up or plastic tweezers is recommended for manual placement. Tape and reeled packages are suitable for automatic pick and placement machine.

■ Flux

- 1. An excessive amount of flux or too rapid temperature rise can causes solvent burst, solder can generate a large quantity of gas. The gas can spreads small solder particles to cause solder balling effect or bridging problem.
- 2. Flux containing too high of a percentage of halide may cause corrosion of termination unless sufficient cleaning is applied.
- 3. Use rosin-type flux. Highly acidic flux (halide content less than 0.2wt%) is not recommended.
- 4. The water soluble flux causes deteriorated insulation resistance between outer terminations unless sufficiently cleaned.

Component Spacing

For wave soldering components, the spacing must be sufficient far apart to prevent bridging or shadowing. This is not so important for reflow process but sufficient space for rework should be considered. The suggested spacing for reflow soldering and wave soldering is 0.5mm and 1.0mm, respectively.

Solder Fillet

Too much solder amount may increase solder stress and cause crack risk. Insufficient solder amount may reduce adhesive strength and cause parts falling off PCB. When soldering, confirm that the solder is placed over 0.2mm of the surface of the terminations.

Multi-Layer Ceramic Capacitor

Recommended Land Pattern Dimensions

When mounting the capacitor to substrate, it's important to consider carefully that the amount of solder (size of fillet) used has a direct effect upon the capacitor once it's mounted.

- 1. The greater the amount of solder, the greater the stress to the elements. As this may cause the substrate to break or crack.
- 2. In the situation where two or more devices are mounted onto a common land separate the device into exclusive pads by using soldering resist.
- 3. Land width equal to or less than component. It is permissible to reduce land width to 80% of component width.

Size mm (EIA)	L x W (mm)	a (mm)	b (mm)	c (mm)
0603 (0201)	0.6*0.3	0.15 to 0.35	0.2 to 0.3	0.25 to 0.3
1005 (0402)	1.0*0.5	0.3 to 0.5	0.35 to 0.45	0.4 to 0.5
1608 (0603)	1.6*0.8	0.7 to 1.0	0.6 to 0.8	0.7 to 0.8
2012 (0805)	2.0*1.25	1.0 to 1.3	0.7 to 0.9	1.0 to 1.2
3216 (1206)	3.2*1.6	2.1 to 2.5	1.0 to 1.2	1.3 to 1.6
3225 (1210)	3.2*2.5	2.1 to 2.5	1.0 to 1.2	2.0 to 2.5
4520 (1808)	4.5*2.0	3.2 to 3.8	1.2 to 1.4	1.7 to 2.0
4532 (1812)	4.5*3.2	3.2 to 3.8	1.2 to 1.4	2.7 to 3.2

Multi-Layer Ceramic Capacitor

Resin Mold

If a large amount of resin is used for molding the chip, cracks may occur due to contraction stress during curing. To avoid such cracks, use a low shrinkage resin. The insulation resistance of the chip will degrade due to moisture absorption. Use a low moisture absorption resin. Check carefully that the resin does not generate a decomposition gas or reaction gas during the curing process or during normal storage. Such gases may crack the chip capacitor or damage the device itself.

Soldering Profile for SMT Process with SnPb Solder Paste

Reflow Soldering

The difference between solder and chip surface should be controlled as following table. The rate of preheat should not exceed 4° C/sec and a target of 2° C/sec is preferred.

Chip Size	3216 and smaller	3225 and above
Preheating	ΔΤ≤150 ℃	ΔΤ≤130 ℃

Multi-Layer Ceramic Capacitor

• Wave Soldering

Chip Size	3216 and smaller	3225 and above
Preheating	ΔΤ≤150 ℃	-

Soldering Iron

Chip Size	3216 and smaller	3225 and above
Preheating	ΔΤ≤190 °C	ΔΤ≤130 ℃

Multi-Layer Ceramic Capacitor

Soldering

Reflow Soldering for Lead free Termination

The difference between solder and chip surface should be controlled as following table. The rate of preheat should not exceed 4° C/sec and a target of 2° C/sec is preferred.

Chip Size	3216 and smaller	3225 and above
Preheating	ΔT≤150 ℃	ΔΤ≤130 ℃

• Flow Soldering for Lead free Termination

Chip Size	3216 and smaller	3225 and above
Preheating	ΔΤ≤150 ℃	-

Multi-Layer Ceramic Capacitor

• Soldering Iron

Chip Size	3216 and smaller	3225 and above
Preheating	ΔΤ≤190 ℃	ΔΤ≤130 ℃

Multi-Layer Ceramic Capacitor

Chip Layout and Breaking PCB

1. To layout the SMD capacitors for reducing bend stress from board deflection of PCB. The following are examples of good and bad layout.

2. When breaking PCB, the layout should be noted that the mechanical stresses are depending on the position of capacitors. The following example shows recommendation for better design.

Multi-Layer Ceramic Capacitor

Aging

The capacitance and dissipation factor of class 2 capacitors decreases with time. It is known as 'aging' that follows a logarithmic low and expressed in terms of an aging constant. Aging is caused by a gradual re-alignment of the crystalline structure of the ceramic. The aging constant is defined as the percentage loss of capacitance at a 'time decade'. The law of capacitance aging is expressed as following equation:

 $C_{t2} = C_{t1} \times (1 - k \times \log_{10}(t_2/t_1))$

- C_{t1} : Capacitance after t1 hours of start aging.
- Ct2: Capacitance after t2 hours of start aging.
- k: aging constant (capacitance decrease per decade)
- t1, t2: time in hours from start of aging.

A typical curve of aging rate is shown in following figure.

When heating the capacitors above Curie temperature $(130^{\circ}C \sim 150^{\circ}C)$ the capacitance can be re-new. So capacitance of class 2 capacitors will be complete de-aged by soldering process; subsequently a new aging process begins.

Because of aging, it is specified an age for measurement to meet the prescribed tolerance for class 2 capacitors. Normally, 1000 hours (t_2 =1000 hrs) is defined.