## Programmable Digital Counters / Timers



## CT Series

## PRODUCT MANUAL

For your safety, read and follow the considerations written in the instruction manual, other manuals and Autonics website.
The specifications, dimensions, etc. are subject to change without notice for product improvement. Some models may be discontinued without notice.

## Features

- Communication function supported (communication model): RS485 (Modbus RTU)
- One-shot output time setting range: 0.01 sec to 99.99 sec by setting per 10 ms


## [Counter]

- Prescale value setting range: 6-digit model: 0.00001 to 99999.9 /

4-digit model: 0.001 to 999.9

- Various input / output modes ( 9 input/11 output modes)
- BATCH counter, count Start Point (counting initial value) setting function


## [Timer]

- Various output modes (13 modes)
- Various time setting range: 6-digit model: 0.001 sec to 99999.9 hour /

4-digit model: 0.001 sec to 9999 hour

- '0' time setting function
- Selectable timer memory retention function for indicator model.


## Safety Considerations

- Observe all 'Safety Considerations' for safe and proper operation to avoid hazards.
- $\triangle$ symbol indicates caution due to special circumstances in which hazards may occur.


## $\triangle$ Warning Failure to follow instructions may result in serious injury or death.

1. Fail-safe device must be installed when using the unit with machinery that may cause serious injury or substantial economic loss. (e.g. nuclear power control, medical equipment, ships, vehicles, railways, aircraft, combustion apparatus, safety equipment, crime / disaster prevention devices, etc.) Failure to follow this instruction may result in personal injury, economic loss or fire.
2. Do not use the unit in the place where flammable / explosive / corrosive gas, humidity, direct sunlight, radiant heat, vibration, impact, or salinity may be present.
Failure to follow this instruction may result in explosion or fire.
3. Install on a device panel to use.

Failure to follow this instruction may result in fire or electric shock.
04. Do not connect, repair, or inspect the unit while connected to a power source.
Failure to follow this instruction may result in fire or electric shock.
05 . Check 'Connections' before wiring.
Failure to follow this instruction may result in fire.
06. Do not disassemble or modify the unit.

Failure to follow this instruction may result in fire or electric shock.
Caution Failure to follow instructions may result in injury or product damage.

1. When connecting the power / sensor input, relay output and communication, use AWG 20 ( $0.50 \mathrm{~mm}^{2}$ ) cable or over, and tighten the terminal screw with a tightening torque of 0.74 to 0.90 N m .
Failure to follow this instruction may result in fire or malfunction due to contact failure.
2. Use the unit within the rated specifications.

Failure to follow this instruction may result in fire or product damage.
03. Use a dry cloth to clean the unit, and do not use water or organic solvent. Failure to follow this instruction may result in fire or electric shock.
04. Keep the product away from metal chip, dust, and wire residue which flow into the unit.
Failure to follow this instruction may result in fire or product damage.

## Cautions during Use

- Follow instructions in ‘Cautions during Use’.

Otherwise, it may cause unexpected accidents.

- Power supply should be insulated and limited voltage / current or Class 2, SELV power supply device.
- Use the product, 0.1 sec after supplying power.
- When supplying or turning off the power, use a switch or etc. to avoid chattering.
- Install a power switch or circuit breaker in the easily accessible place for supplying or disconnecting the power
- When the counter is operating, in case of contact input, set count speed to low speed mode ( 1 cps or 30 cps ) to operate. If set to high speed mode ( $1 \mathrm{k}, 5 \mathrm{k}, 10 \mathrm{kcps}$ ), counting error occurs due to chattering.
- Use twisted pair wire for communication line.
- Keep away from high voltage lines or power lines to prevent inductive noise.

In case installing power line and input signal line closely, use line filter or varistor at power line and shielded wire at input signal line.
Do not use near the equipment which generates strong magnetic force or high frequency noise.

- This unit may be used in the following environments.
- Indoors (in the environment condition rated in 'Specifications')
- Altitude max. 2,000 m
- Pollution degree 2
- Installation category II


## Ordering Information

This is only for reference, the actual product does not support all combinations For selecting the specified model, follow the Autonics website.


## Manual

For proper use of the product, refer to the manuals and be sure to follow the safety considerations in the manuals
Download the manuals from the Autonics website.

## Dimensions

- Unit: mm, For the detailed drawings, follow the Autonics website
- CTS


## 


$\square$ CTM


- Bracket
- CTS




## $\square$ Panel cut-out



## Unit Descriptions




| No. | Part name | Name <br> plate | Function |
| :--- | :--- | :--- | :--- |
| 1 | Counting value <br> display part (red) | - | RUN mode: Displays counting value, time progress <br> value <br> Parameter 1,2 group: Displays setting item |
| 2 | Setting value <br> display part (green) | - | RUN mode: Displays setting value <br> Parameter 1,2 group: Displays setting content |
| 3 | Key LOCK indicator | LOCK | Turns ON for key LOCK setting |, | Counter indicator |
| :--- |

## Connections

- Counter operation: If INHIBIT signal is applied, count input will be prohibited. Timer operation: If INHIBIT signal is applied, time progressing will stop.(HOLD) - SOURCE: $100-240$ VAC~ $50 / 60 \mathrm{~Hz} 12 \mathrm{VA}$
$24 \mathrm{VAC} \sim 50 / 60 \mathrm{~Hz} 10 \mathrm{VA}, 24-48 \mathrm{VDC}=-=8 \mathrm{~W}$
- CTS
- 1-stagepreset, standard model (CT $\square \mathrm{S}$-1P $\square$ ) • 1 -stage preset, comm. model ( $\mathrm{CT} \square \mathrm{S}-\mathrm{P} \square \square \mathrm{T}$ )

- 2-stage preset, standard model (CT $\square \mathrm{S}-2 \mathrm{P} \square$ )


RESISTIVE LOAD SOURCE

- Indicator, standard model (CT6S-I $\square$ )

12 VDC $=100 \mathrm{~mA}$


SOURCE

- 2-stage preset, comm. model (CT $\square \mathrm{S}$-2P $\square \mathrm{T}$ )


RESISTIVE LOAD SOURCE
Indicator, comm. model (CT6S-I $\square$ T)



- 2-stage preset, standard model (CT6Y-2P $\square$ )
$\begin{array}{ll}250 \mathrm{VAC} \sim 3 \mathrm{~A}, 30 \mathrm{VDC}=3 \mathrm{~A} & \text { SOLID } \\ \text { STATE OUT }\end{array}$ RESISTIVE LOAD $30 \mathrm{VDC}=$

- Indicator, standard model (CT6Y-I $\square$ )

$\square$ CTM
- 1-stage preset, standard model(CT6M-1P $\square$ )

- 2-stage preset, standard model (CT6M-2P $\square$ )

- Indicator, standard model (CT6M-I $\square$ )

- 1-stage preset, comm. model (CT6Y-1P $\square$ T)

250 VAC~3A, SOLID
$30 \mathrm{VDC}=3 \mathrm{~A}$ STATE OUT
N.C. COM N.O. $100 \mathrm{~mA} A(+) \quad B(-)$


- 2-stage preset, comm. model (CT6Y-2P $\square$ T)

- Indicator, comm. model (CT6Y-I $\square$ T)


- 2-stage preset, comm. model (CT6M-2P $\square \mathrm{T}$ )


OUT1 SOLID STATE OUT $30 \mathrm{VDC}=$


SOURCE

- Indicator, comm. model (CT6M-I $\square$ T)



## Specifications

| Model | CTS $\square-\square \square \square$ |  | CTY $\square$ - $\square \square \square$ | CTM $\square$ - $\square \square \square$ |
| :---: | :---: | :---: | :---: | :---: |
| Display digits | 4-digit | 6-digit | 6-digit | 6-digit |
| Display method | 7 -segment (counting value: red, setting value: green) LED |  |  |  |
| Character size | W $\times \mathrm{H}$ (unit: mm) |  |  |  |
| Counting value | $6.5 \times 10$ | $4.5 \times 10$ | $4.2 \times 9.5$ | $6.6 \times 13$ |
| Setting value | $4.5 \times 8$ | $3.5 \times 7$ | $3.5 \times 7$ | $5 \times 9$ |
| Counter | Count up, count down, count up / down |  |  |  |
| Counting range ${ }^{017}$ | $\begin{aligned} & -999 \text { to } \\ & 9999 \end{aligned}$ | -99999 to | 9999 |  |
| Timer | Count up, count down |  |  |  |
| Error | $\begin{aligned} & \hline \text { Repeat / SET / voltage / Temp. - Power ON Start: } \leq \pm 0.01 \% \pm 0.05 \mathrm{sec} \\ & \text { Signal ON Start: } \leq \pm 0.01 \% \pm 0.03 \mathrm{sec} \end{aligned}$ |  |  |  |
| Input logic | Voltage input (PNP) - input impedance: $5.4 \mathrm{k} \Omega,[\mathrm{H}]: 5-30 \mathrm{VDC}=$, , [L]: $0-2 \mathrm{VDC}=$ No-voltage input (NPN) - short-circuit impedance: $\leq 1 \mathrm{k} \Omega$, short-circuit residual voltage: $\leq 2 \mathrm{VDC}=$ |  |  |  |
| One-shot output time | 0.01 to 99.99 s |  |  |  |
| Product components | Product, instruction manual |  |  |  |
| Bracket | Mounted |  | $\times 2$ | $\times 2$ |
| Unit weight (packaged) | $\approx 159 \mathrm{~g}(\approx 212 \mathrm{~g})$ |  | $\approx 140 \mathrm{~g}(\approx 228 \mathrm{~g})$ | $\approx 252 \mathrm{~g}(\approx 322 \mathrm{~g})$ |
| Approval | ( $\epsilon_{\text {c }} \mathbf{7} \mathbf{N}_{\text {us }} \mathrm{EH[ }$ |  |  |  |

1) It varies depending on the setting of decimal points.

| Model | CTS $\square$ - $\square \square \square$ | CTY $\square-\square \square \square$ |  | Стм $\square-\square \square \square$ |
| :---: | :---: | :---: | :---: | :---: |
| Contact control output | Relay |  |  |  |
| Type (1-stage) | SPDT (1c) $\times 1$ | SPDT (1c) $\times 1$ |  | SPDT ( 1 c ) $\times 1$ |
| Type (2-stage) | SPST (1a) $\times 2$ | ```Standard: SPST (1a) }\times1\mathrm{ , SPDT (1c) ×1 Communication:SPST (1a) \times2``` |  | $\begin{aligned} & \text { SPST }(1 a) \times 1 \text {, } \\ & \text { SPDT }(1 \mathrm{c}) \times 1 \end{aligned}$ |
| Capacity | $\begin{aligned} & 250 \mathrm{VAC} \sim 5 \mathrm{~A}, \\ & 30 \mathrm{VDC}=5 \mathrm{~A} \\ & \text { resistive load } \end{aligned}$ | $\begin{aligned} & 250 \mathrm{VAC} \sim 3 \mathrm{~A}, \\ & 30 \mathrm{VDC}=3 \mathrm{~A} \\ & \text { resistive load } \end{aligned}$ |  | $\begin{aligned} & \hline 250 \mathrm{VAC} \sim 5 \mathrm{~A}, \\ & 30 \mathrm{VDC}=5 \mathrm{~A} \\ & \text { resistive load } \\ & \hline \end{aligned}$ |
| Solid-state control output | NPN open collector |  |  |  |
| Type (1-stage) | Standard: $\times 1$, Communication:- | Standard: $\times 1$, Communication: $\times 1$ |  | Standard: $\times 2$, <br> Communication: $\times 2$ |
| Type (2-stage) | Standard: $\times 1$, Communication:- | Standard: $\times 1$, Communication:- |  | Standard: $\times 3$, <br> Communication: $\times 2$ |
| Capacity | $\leq 30 \mathrm{VDC}=-=, 100 \mathrm{~mA}$ | $\leq 30 \mathrm{VDC}=-, 100 \mathrm{~mA}$ |  | $\leq 30 \mathrm{VDC}==, 100 \mathrm{~mA}$ |
| Voltage | AC voltage type |  | AC / DC voltage type |  |
| Power supply | $100-240 \mathrm{VAC} \sim \pm 10 \% 50 / 60 \mathrm{~Hz}$ |  | $\begin{aligned} & 24 \mathrm{VAC} \sim \pm 10 \% 50 / 60 \mathrm{~Hz}, \\ & 24-48 \mathrm{VDC}= \pm 10 \% \end{aligned}$ |  |
| Power consumption | $\leq 12 \mathrm{VA}$ |  | $\mathrm{AC}: \leq 10 \mathrm{VA}, \mathrm{DC}: \leq 8 \mathrm{~W}$ |  |
| External power supply | $\leq 12 \mathrm{VDC}== \pm 10 \% 100 \mathrm{~mA}$ |  |  |  |
| Memory retention | $\approx 10$ years (non-volatile semiconductor memory type) |  |  |  |
| Insulation resistance | $\geq 100 \mathrm{M} \Omega$ ( $500 \mathrm{VDC}==$ megger) |  |  |  |
| Dielectric strength | 2,000 VAC $\sim 50 / 60 \mathrm{~Hz}$ for 1 minute |  |  |  |
| Noise immunity | $\pm 2 \mathrm{kV}$ square wave noise (pulse width: $1 \mu \mathrm{~s}$ ) by the noise simulator |  | $\pm 500 \mathrm{~V}$ square wave noise (pulse width: $1 \mu \mathrm{~s}$ ) by the noise simulator |  |
| Vibration | 0.75 mm double amplitude at frequency of 10 to 55 Hz (for 1 minute) in each X , $\mathrm{Y}, \mathrm{Z}$ direction for 1 hour |  |  |  |
| Vibration (malfunction) | 0.5 mm double amplitude at frequency of 10 to 55 Hz (for 1 minute) in each X , Y , Z direction for 10 min |  |  |  |
| Shock | $300 \mathrm{~m} / \mathrm{s}^{2}(\approx 30 \mathrm{G})$ in each $X, Y, Z$ direction for 3 times |  |  |  |
| Shock (malfunction) | $100 \mathrm{~m} / \mathrm{s}^{2}(\approx 10 \mathrm{G}$ ) in each $X, Y, Z$ direction for 3 times |  |  |  |
| Relay life cycle | $\begin{aligned} & \text { Mechanical: } \geq 1,000,000 \text { operations } \\ & \text { Electrical: } \geq 100,000 \text { operations } \\ & \hline \end{aligned}$ |  |  |  |
| Ambient temperature | -10 to $55^{\circ} \mathrm{C}$, storage: -25 to $65^{\circ} \mathrm{C}$ (no freezing or condensation) |  |  |  |
| Ambient humidity | 35 to $85 \%$ RH, storage: 35 to $85 \%$ RH (no freezing or condensation) |  |  |  |
| Protection rating | IP65 (front part, IEC standard) |  |  |  |

## Communication Interface

■ RS485

| Comm. protocol | Modbus RTU (16-bit CRC) |
| :--- | :--- |
| Application standard | Compliance with EIA RS485 |
| Max. connection | 31-unit (address: 1 to 127) |
| Comm. synchronous method | Asynchronous |
| Comm. method | 2-wire half duplex |
| Comm. distance | $\leq 800 \mathrm{~m}$ |
| Comm. speed | $2,400 / 4,800 / 9,600$ (default) / 19,200 / 38,400 bps |
| Comm. response time | 5 to 99 ms (default: 20 ms ) |
| Start bit | 1 -bit (fixed) |
| Data bit | 8-bit (fixed) |
| Parity bit | None (default), Even, Odd |
| Stop bit | 1-bit, 2-bit (default) |
| EEPROM life cycle | $\approx 1,000,000$ operations (Erase /Write) |

## Software

Download the installation file and the manuals from the Autonics website.

## DAQMaster

It is the comprehensive device management program for Autonics' products, providing parameter setting, monitoring and data management.

## Detach the Case

## CTS，CTY



## Select Input Logic

－For CTS，CTY，detach the case and proceed the settings．See the＇Detach the Case＇．
－The position of internal switch varies depending on the each model．
－How to change the settings：
power OFF $\rightarrow$ change settings $\rightarrow$ power $\mathrm{ON} \rightarrow$ press［RESET］key or input the RESET
signal（ $\geq 20 \mathrm{~ms}$ ）to the external terminal．
－CTS，CTY


Press to direction（1）and pull toward direction（2）for detaching the case and contents．
$\triangle$ Caution：Turn OFF the power before detaching the case．


## Mode Setting



01）Use $[\mathbf{\Lambda}],[\mathbf{V}]$ key to check the parameter setting．
In 2 －stage preset model， 1 －stage preset value and 2 －stage preset value are displayed each time when pressing ［MD］key．In timer，it is available for the output operation mode：OND，OND．1，OND．2，
02）For CT6M－1P／2P model only．Press［ $\mathbb{4}]$ key to set BATCH counter setting value．

## Preset Value Change Mode

Even if the mode of preset value change，input operation and output control will continue． The preset value could be set to 0 and the output of 0 preset value occurs．
－The preset value could not be set to 0 depending on the output operation mode
（When setting to 0 ，the value of setting value display part flashes 3 times．）
－If no key is touched for 60 sec ，the product will return to RUN mode without being restored
－E．g．：To set 1－stage preset value $=180,2$－stage preset value $=200$
1．Press［《］key to enter preset value change mode．PS1 indicator turns ON and 1 digit of preset value flashes．
2．Use［ $\mathbf{4}],[\mathbf{A}],[\mathbf{V}]$ key to set 1－stage preset value $=180$ ．
3．Press［MD］key to enter 2－stage preset value change mode．
4．Use［ $\mathbf{4}],[\mathbf{\Delta}],[\mathbf{\nabla}]$ key to set 2－stage preset value $=200$ ．
5．Press［MD］key to return RUN mode．

## Reset

In RUN mode，if pressing［RST］key or applying the signal to RESET terminal on the back side，present value will be reset． For RESET signal terminals based on the input method，refer to the＇Connections＇and the following table．
The output maintains OFF state．

| Model | Input logic |  |
| :--- | :--- | :--- |
|  | No－voltage（NPN） | Voltage（PNP） |
| CTS | Short no．9，10 <br> terminals | Short no．8，10 <br> terminals |
| CTY | Short no．4，5 <br> terminals | Short no．3，5 <br> terminals |
| CTM | Short no．11，12 <br> terminals | Short no．10，12 <br> terminals |

## Error Display and Output Operation

－When error occurs，the output turns OFF．
When setting 1 －stage preset value $=0$, OUT1 output turns OFF．
In case of 2 －stage preset value $<1$－stage preset value，OUT1 output is ignored and only OUT2 output operates．
－Indicator model does not have error display function．

## Parameter Setting

－Some parameters are activated／deactivated depending on the model or setting of other parameters．Refer to the description of each parameter
－If changing the setting value of parameter 1 group via communication，reset display value，and output．
［MD］key：Saves current setting value and moves to the next parameter
［4］key：Checks fixed value／Changes setting digits．
［ $\mathbf{\Delta}],[\mathbf{V}]$ key：Changes setting values．
－Parameter 1 group（counter）

| Parameter |  | Mark | Defaults | Setting range | Display condition |
| :---: | :---: | :---: | :---: | :---: | :---: |
| C1－1 | Counter／ timer ${ }^{011}$ | ［－t | Coun | COUN：counter，TIME：timer | － |
| C1－2 | Input operation mode ${ }^{01)}$ | 1 n | Ud－［ | UD－C：phase different input， UP，UP－1，UP－2，DN，DN－1，DN－2， UD－A：command input， UD－B：individual input | － |
| C1－3 | Output operation mode ${ }^{01)}$ | －UL．ก̄ | $F$ | ［Preset setting model］ <br> F，N，C，R，K，P，Q，A，S＊，T＊，D＊ | ＊C1－2 input operation mode：UD－A， UD－B，UD－C |
| C1－4 | Indication mode ${ }^{01)}$ | d5P．n | tothi | ［Indicator model］ <br> HOLD，TOTAL <br> －HOLD <br> ：You can set the PRESET value． | C1－2 input operation mode：UP， UP－1，UP－2， DN，DN－1， DN－2 |
| C1－5 | Max． counting speed ${ }^{01}$ | ［P5 | 30 | $30,1 \mathrm{~K}, 5 \mathrm{~K}, 10 \mathrm{~K}, 1 \mathrm{cps}$ <br> －Max．counting speed is when duty ratio of INA or INB input signal is 1：1． It is applied for INA，or INB input as same． | C1－3 output operation mode ${ }^{021}$ |
| C1－6 | OUT2 <br> output <br> time ${ }^{011}$（03） | －吅己 | Hold | ［2－stage preset setting model］ 0.01 to 99.99 sec ，Hold | C1－3 output operation mode：C，R， $\mathrm{K}, \mathrm{P}, \mathrm{Q}, \mathrm{A}^{04)^{\prime}}$ |
| C1－7 | OUT1 <br> output <br> time ${ }^{011(03)}$ | －ut 1 | 00.10 | ［2－stage preset setting model］ <br> 0.01 to 99.99 sec ，Hold <br> －When $10^{1}$ digit is flashing，press［ key once and Hold appears． | C1－3 output operation mode：F，N， C，R，K，P，Q， $A^{04)}$ |
| C1－8 | OUT <br> output <br> time ${ }^{011}{ }^{03 /}$ | －UL．t | HoLd | ［1－stage preset setting model］ 0.01 to 99.99 sec ，Hold | C1－3 output operation mode：C，R， $\mathrm{K}, \mathrm{P}, \mathrm{Q}, \mathrm{A}^{04)}$ |
| C1－9 | Counting value／ preset value decimal point ${ }^{01)}$ | $d^{\prime}$ | － | ［6 digit model］ <br> ［4 digit model］ | － |
| C1－10 | Min．RESET time | r 5t | 20 | $1,20 \mathrm{~ms}$ | － |
| C1－11 | Input logic | 514 | $n \mathrm{Pn}$ | NPN，PNP <br> －Set the same as settings of input logic selection switch． | － |
| C1－12 | Prescale decimal point ${ }^{01105)}$ | 5C．dP | .----- $-\ldots---$ | ［6 digit model］ <br> ［4 digit model］ <br> －－－－－，－－－－－－－－－－． | － |
| C1－13 | Prescale | $5[$ | 1.00000 | ［6 digit model］ 0.00001 to 99999.9 | － |
|  | value ${ }^{\text {01 }}$ |  | 1.000 | ［4 digit model］ 0.001 to 999.9 | － |
|  | Start Point |  | 000000 | ［6 digit model］ 0.00000 to 999999 | C1－2 input operation |
|  |  |  | 0000 | ［4 digit model］ 0.000 to 9999 | UP，UP－1，UP－ 2, UD-A, UD-B |
| C1－15 | Memorize counting value | dRヒR | Clr | CLR：Resets counting value when power is off． <br> REC：Memorizes counting value at the moment of power off． （memory retention） | － |
| C1－16 | Key lock | Loct | L．oFF | L．OFF：Unlock key LOCK， key LOCK indicator OFF <br> LOC．1：Locks［RST］key， key LOCK indicator ON <br> LOC．2：Locks［ $\mathbf{~}],[\mathbf{V}],[\mathbf{\Lambda}]$ key， key LOCK indicator ON LOC．3：Locks［RST］，［ $\mathbf{4}],[\mathbf{V}],[\mathbf{\Lambda}]$ key， key LOCK indicator ON | － |

01）When the setting value of the parameter is changed，all outputs are OFF and reset the current value when returning to the RUN mode．
02）C1－3 Output operation mode：in case of D， $1,30,1 \mathrm{kcps}$ selectable
C1－5 Max．counting speed： $5 \mathrm{k}, 10 \mathrm{kcps} \& C 1-3$ Output operation mode：When D is set，the max．counting speed is automatically changed to 30 cps ．
03）In case of 1－stage preset model，C1－7 OUT1 output time is not displayed，C1－6 OUT2 output time is displayed as OUT．T．
04）For other output operation modes，Hold is fixed．
05）It can not be set smaller than the digits of C1－9 Counting value／preset value decimal point．
06）The setting range is connected to the C1－9 Counting value／preset value decimal point．

- Parameter 1 group (timer)

| Parameter |  | Mark | Defaults | Setting range | Display condition |
| :---: | :---: | :---: | :---: | :---: | :---: |
| T1-1 | Counter/ timer ${ }^{011}$ | [-t | Coun | COUN: counter, TIME: timer | - |
| T1-2 | Time range ${ }^{\text {017 }}$ | 5E[ | - Refer to th | he table below. ${ }^{\text {22) }}$ | - |
| T1-3 | $\begin{aligned} & \text { UP / DOWN } \\ & \text { mode } \\ & \hline \end{aligned}$ | U-d | $U P$ | UP: $0 \rightarrow$ setting time DN: setting time $\rightarrow 0$ | - |
| T1-4 | Indication mode ${ }^{0}$ | d5P.n | tothl | [Indicator model] <br> TOTAL, HOLD, ONT.D: On time display <br> - HOLD, ONT.D <br> :You can set the PRESET value. | - |
| T1-5 | Memorize counting value | dAt ${ }^{\text {A }}$ | Clr | [Indicator model] CLR: Resets counting value when power is off. <br> REC: Memorizes counting value at the moment of power off. (memory retention) | - |
| T1-6 | Output operation mode ${ }^{01}$ | هUt.i | and | OND, OND.1, OND.2, FLK, FLK.1, FLK.2, INT, INT.1, INT. $2^{033}$, OFD, NFD, NFD.1, INTG | - |
| T1-7 | OUT2 output time | - Ut2 | HoLd | [2-stage preset setting model] 0.01 to 99.99 sec , Hold <br> - When $10^{1}$ digit is flashing, press key once and Hold appears. |  |
| T1-8 | OUT1 output time ${ }^{011}$ | 㕷 1 | 00.10 | [2-stage preset setting model] 0.01 to 99.99 sec , Hold <br> - When $10^{1}$ digit is flashing, press key once and Hold appears. | T1-6 output operation mode ${ }^{046}$ |
| T1-9 | OUT output time ${ }^{01}$ | هUt.E | HoLd | [1-stage preset setting model] 0.01 to 99.99 sec , Hold <br> - When $10^{1}$ digit is flashing, press key once and Hold appears. |  |
| T1-10 | Input logic | 515 | $n \mathrm{Pn}$ | NPN, PNP <br> - Set the same as settings of input logic selection switch. | - |
| T1-11 | Input signal time | I n.t | 20 | $1,20 \mathrm{~ms}$ <br> - CTS / CTY <br> : min. signal width of INA, INH, RESET signal <br> - CTM <br> : min. signal width of INA, RESET, INHIBIT, BATCH RESET signal | - |
| T1-12 | Key lock | Loct | L.oFF | L.OFF: Unlock key LOCK, <br> key LOCK indicator OFF LOC.1: Locks [RST] key, <br> key LOCK indicator ON <br> LOC.2: Locks [ $\mathbf{~}],[\mathbf{V}],[\mathbf{\Delta}]$ key, key LOCK indicator ON LOC.3: Locks [RST], [ $\mathbf{~}],[\mathbf{\nabla}],[\mathbf{\Delta}]$ key, key LOCK indicator ON | - |

1) When the setting value of the parameter is changed, all outputs are OFF and reset the current value when returning to the RUN mode
2) [6-digit model] setting range

| Counting value display part | SEC (defaults) |  | SEC | SEC |  | SEC | M S | M S |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Setting display part | 999.999 |  | 9999.99 | 99999.9 |  | 999999 | 9959.99 | 99959.9 |  |
| Range | $\begin{array}{\|l} \hline 0.001 \mathrm{sto} \\ 999.999 \mathrm{~s} \end{array}$ |  | $\begin{array}{\|l} 0.01 \mathrm{~s} \text { to } \\ 9999.99 \mathrm{~s} \end{array}$ | $\begin{aligned} & 0.1 \mathrm{~s} \text { to } \\ & 99999.9 \mathrm{~s} \end{aligned}$ |  | $\begin{aligned} & \text { 1s to } \\ & 999999 \text { s } \end{aligned}$ | 0.01 s to 99m59.99s | $\begin{aligned} & \hline 0.1 \mathrm{sto} \\ & 999 \mathrm{~m} 59.9 \mathrm{~s} \\ & \hline \end{aligned}$ |  |
| Counting value display part | M S |  | MIN | MIN H |  | HM S | H M | HOUR |  |
| Setting display part | 999959 999 |  | 99999.9 | 999999 9959 |  | 995959 | 999959 | 99999.9 |  |
| Range | $\begin{aligned} & 1 \text { sto } \\ & 9999 \mathrm{~m} 59 \mathrm{~s} \\ & \hline \end{aligned}$ |  | $\begin{aligned} & 0.1 \mathrm{~m} \text { to } \\ & 99999.9 \mathrm{~m} \end{aligned}$ | 1m to <br> 999999 m 1 m <br> 99 |  | $\begin{aligned} & 1 \mathrm{~m} \text { to } \\ & 99 \mathrm{~h} 59 \mathrm{~m} 59 \mathrm{~s} \end{aligned}$ | $\begin{aligned} & 1 \mathrm{~m} \text { to } \\ & 999959 \mathrm{~m} \end{aligned}$ | $\begin{aligned} & \text { 0.1h to } \\ & 99999.9 \mathrm{~h} \end{aligned}$ |  |
| [4-digit model] setting range |  |  |  |  |  |  |  |  |  |
| Counting value display part | SEC (defaults) | SEC | SEC | SEC | M S | MIN | MIN | HM | HOUR |
| Setting display part | 9.999 | 99.99 | 999.9 | 9999 | 9959 | 999.9 | 9999 | 9959 | 9999 |
| Range | $\begin{aligned} & \text { 0.001s to } \\ & 9.999 \mathrm{~s} \end{aligned}$ | $\begin{aligned} & \hline 0.01 \mathrm{~s} \\ & \text { to } \\ & 99.99 \mathrm{~s} \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|l\|} \hline 0.1 \mathrm{sto} \\ 999.9 \mathrm{~s} \end{array}$ | $\begin{array}{\|l\|l\|} \hline 1 \text { sto } \\ 9999 s \end{array}$ | $\begin{array}{\|l\|} \hline \text { 1sto } \\ 99 \mathrm{~m} 59 \mathrm{~s} \end{array}$ | $\begin{array}{l\|l}  & 0.1 \mathrm{~m} \text { to } \\ 9 \mathrm{~s} & 999.9 \mathrm{~m} \end{array}$ | $\begin{array}{\|l\|} \hline 1 \mathrm{~m} \text { to } \\ 9999 \mathrm{~m} \end{array}$ | 1 m to 99h59m | $\begin{array}{\|l} 1 \mathrm{~h} \text { to } \\ 9999 \mathrm{~h} \end{array}$ |

3) Appears for 2 -stage preset model only
4) In case of T1-6 Output operation mode: FLK.1, FLK.2, INTG, or T1-6 Output operation mode of 1-stage preset model: OND, OND.1, OND.2, T1-8 OUT1 output time is not displayed, T1-7OUT2 output time is displayed as oul.

- Parameter 2 group (communication)
- Only for RS485 communication model.

| Parameter |  | Mark | Defaults | Setting range | Display condition |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2-1 | Comm. address | Rddr | 001 | 1 to 127 <br> - Do not set the same address during multi-comm. | - |
| 2-2 | Comm. speed | bP5 | 96 | 24: 2,400, 48: 4,800, 96: 9,600, 192: 19,200, 384: 38,400 bps | - |
| 2-3 | Parity bit | Prty | nonE | NONE, EVEN, ODD | - |
| 2-4 | Stop bit | 5tP | 2 | 1,2 bit | - |
| 2-5 | Response waiting time | r 5 L.t | 20 | 16 to 99 ms | 2-2 Comm. speed: 24 |
|  |  |  |  | 8 to 99 ms | 2-2 Comm. speed: 48 |
|  |  |  |  | 5 to 99 ms | $\begin{aligned} & \hline \text { 2-2 Comm. speed: } 96 \text {, } \\ & \hline \end{aligned}$ |
| 2-6 | Comm. write | Con̄. ${ }^{\text {u }}$ | EnA | ENA: enable, DISA: disable | - |

## Output Operation Mode

For the detailed timing chart for operation output mode, refer to the manual.

## Input Connections

- Input: INA, INB / INH, RESET, INHIBIT, BATCH RESET
- Max. counting speed in the contact input: 1 or 30 cps setting (counter)


## No-voltage (NPN) input

- Solid-state input

- Contact input


Voltage (PNP) input

- Solid-state input

- Contact input



## Output Connections

- Solid-state output


A: When using inductive load (relay etc.), surge absorber (diode, varistor etc.) must be connected between both sides of the load.

- Contact output



## Description of Function

## - Switching display in setting display part

1-stage preset value and 2-stage preset value are displayed each time when pressing [MD] key in 2-stage preset model

- In timer, it is available for output operation mode: OND, OND.1, OND. 2 only


## BATCH counter

Counting value display part: BATCH counter value, setting display part: BATCH counter setting value is displayed
In counter operation, count the number of reaching value of $\mathrm{CT} 6 \mathrm{M}-1 \mathrm{P} \square \square$ to preset value, and $\mathrm{CT} 6 \mathrm{M}-2 \mathrm{P} \square \square$ to 2 -stage preset value
In timer operation, count the number of reaching setting time

- Output operation mode: in case of FLK, count the number of reaching T.off setting time and T.on setting time


## BATCH counter operation

BATCH counting value is increasing until BATCH reset signal applied. BATCH counting value will be circulated when it is over 999999


BATCH RESET
If pressing [RST] key on the front side or the signal to BATCH RESET terminal on the back side panel, BATCH counting value will be reset and BATCH output maintains OFF state.

- When selecting voltage input (PNP), short terminals 10 and 14 , or when selecting no-voltage input (NPN), short terminals 11 and 14 to reset.


## Applications

counter]
In case, put 5 products in a box then pack the boxes when they reaches to 200
PRESET $=5$, BATCH $=200$
When the count value of counter reaches to the preset value 5 , the control output (OUT) will be on, and at this time the count value of the BATCH counter will be increased by 1 . The control box which is received the control output (OUT) repeatedly controls conveyor to move the full box and to place the next empty box for standby.
When the BATCH counting value reaches to 200, BATCH output will be ON. Then the contro box stops conveyor and provides a control signal for packing.

timer]
Fills milk into the bottle for 3 sec when 500 bottles are filled

- Setting time $=3$ sec, BATCH $=500$


```
BATCH counting finishlamp
```

```
BATCH counting finishlamp
```


## Start Point (counter)

This function is that start at initial value set at Start Point value.
When reset is applied, the present value is initialized to Start Point value.

- After Count Up at output operation mode: C, R, P, Q, present value starts at Start Point value


## Prescale (counter)

This function is to set and display calculated unit for actual length, liquid, position, etc. It is called 'prescale value' for measured length, liquid, or position, etc per 1 pulse.

- When moving L , the desired length to be measured, and P , the number of pulses per 1 revolution of a rotary encoder, occurs, prescale value is L/P.


## - Application

Diameter of pulley connected with encoder is 22 mm , the number of pulses by 1 rotation of


- Prescale value $=\frac{\pi \times \text { Diameter of pulley }}{\begin{array}{c}\text { The number of pulses by } \\ \text { rotation of encoder }\end{array}}$
$=\frac{3.1416 \times 22}{1000}$
$=0.069 \mathrm{~mm} /$ pulse

[^0] it is available to control conveyor position by 0.1 mm unit.

## Counter Operation

Input operation mode
Rising: $5 /$ /Falling: 7

| Mode | Counting chart ${ }^{01)}$ | Operation description |
| :---: | :---: | :---: |
| UP |  | - INA: Counting input INB: No counting input <br> - INB: Counting input INA: No counting input |
| UP-1 |  | When INA input signal is rising, it counts. <br> - INA: Counting input INB: No counting input |
| UP-2 |  | When INA input signal is falling, it counts. <br> - INA: Counting input INB: No counting input |
| DN |  | - INA: Counting input INB: No counting input <br> - INB: Counting input INA: No counting input |
| DN-1 |  | When INA input signal is rising, it counts. <br> - INA: Counting input INB: No counting input |
| DN-2 |  | When INA input signal is falling, it counts. <br> - INA: Counting input INB: No counting input |
| UD-A <br> : command input |  | INB: In case of L, count up <br> INB: In case of H, count down <br> - INA: Counting input INB: Counting command input |
| UD-B <br> : individual input |  | When INA and INB input signals are rising at the same time, it maintains previous counting value. <br> - INA: Up counting input <br> INB: Down counting input |
| UD-C <br> : phase different input |  | When connecting encoder output A, B phase with counter input INA and INB, set input operation mode as UD-C. |

1) A should be over min. signal width, $B$ is over $1 / 2$ of min. signal width. If the signal is smaller than these widths, it may cause counting error $( \pm 1)$.

| - Min. signal width by counting speed |  | INA H <br> (INB) L $\qquad$ |  | OFF |
| :---: | :---: | :---: | :---: | :---: |
| Counting speed [cps ${ }^{011}$ ] | Min. signal width [ms] |  |  | off |
| 1 | 500 |  | $\xrightarrow{T}$ :mi | signal width |
| 30 | 16.7 | - H,L of the coun | ting chart |  |
| 1 k | 0.5 | Input logic | Voltage | No-voltage |
| 5 k | 0.1 | Character | input (PNP) | input (NPN) |
| 10 k | 0.05 | H | 5-30 VDC=- | Short |
| 01) $1 \mathrm{cps}=1 \mathrm{~Hz}$ |  | L | 0-2 VDC=- | Open |

## Output operation mode

Out output of 1 -stage preset model operates as same with the OUT2 output of 2 -stage preset model.
OUT1 output of 2-stage preset model is operated One-shot output or retained (Hold) output. (except S, T, D of input operation mode)
OUT 1 output could be set to 0 in all modes and 0 value output turns ON .
OUT2 output could not set to 0 in output operation mode: C, R, P, Q.

- Output type

One-shotoutput
Retained (hold) output One-shot output Retained (hold) output Coincidence output -
Mode Output operation description in input operation mode
-

F

| UP, UP - 1/2 | DN, DN-1/2 | UD-A/B/C |
| :---: | :---: | :---: |
| RESET П П П | $7 \quad 7 \quad 7$ | $\Pi \quad!\quad!\quad!$ |
| 999999 - - < |  |  |
| 2-stage preset-- | $\cdots$ | A-A |
|  |  |  |
|  |  |  |

After count-up, counting display value increases or decreases until RESET signal is applied and retained (hold) output is maintained.


N

After count-up, counting display value and retained (hold) output are maintained until RESET signal is applied.


When count-up, counting display value will be RESET and count simultaneously.
OUT1 retained (hold) output will be OFF after OUT2 One-shot output time.

- TheOne-shotoutput time ofOUT1 is regardless ofOUT2.


R
After count-up, counting value display is RESET after One-shot output time ofOUT2 and it counts simultaneously.
OUT1 retained (hold) output will be OFF after OUT2 One-shot output time.

- The One-shotoutput time of OUT1 is regardless ofOUT2.


After count-up, counting display value increases or decreases until RESET signal is applied. OUT1 retained (hold) output will be OFF after OUT2 One-shot output time. - The One-shotoutput time ofOUT1 is regardless of OUT2.


After count-up, counting display value is maintained while OUT2 output is on.
Counting value is internally RESET and counts simultaneously.
When OUT2 is OFF, displays counting value while OUT2 is ON, and it increases or decreases.
OUT1 retained (hold) output will be OFF after OUT2 One-shot output time. - The One-shotoutput time of OUT1 is regardless ofOUT2.


After count-up, counting display value increases or decreases during OUT2 One-shot time. OUT1 retained (hold) output will be OFF after OUT2 One-shot outputtime.

- TheOne-shotoutput time ofOUT1 is regardless ofOUT2.


After count-up, counting display value and OUT1 retained (hold) output are maintained until RESET input is applied.

- TheOne-shotoutput time of OUT1 is regardless ofOUT2.

| Output operation description in input operation mode |
| :--- |
| UD - A / B/C |
| RESET |
| 999999 |
| 2-stage preset |
| 1-stage preset |
| OUT2 (OUT) |
| OUT1 |

OUT1/2 keep ON state in following condition:
Counting display value $\geq 1 / 2$-stage preset value


OUT1 output is off: counting display value $\geq 1$-stage preset value
OUT1 keeps ON state when 1 -stage preset value $=0$
OUT2 keeps ON state in following condition:counting display value $\geq 2$-stage presetvalue


OUT1 / 2 are ON only when counting display value = 1/2-stage preset value. - When setting 1 kcps for counting speed, solid state contact output should be used. When using contact output, it is difficult to execute normal output operation due to contact reaction time.

Counter operation of indicator model

| Mode | Counting chart and output operation description |
| :--- | :--- |
|  |  |

Mode | Input operation mode= UP, UP-1/2 | Input operation mode=DN, DN-1/2 |
| :--- | :--- | :--- |

TOTAL

Counting value increases or decreases until RESET input is applied.
When input is over max. / min. counting value, it displays 0 .
When applying RESET input, displays $0 . \quad$ When applying RESET input, displays 999999.


Counting value increases or decreases until RESET input is applied.
When input is reaching PRESET, the display When input is reaching 0 , the display value is hold. When applying RESET input, value is hold. When applying RESET input, displays 0 .



## Output operation for other conditions

1. Output operation for the relation of Start Point value, PRESET value

- Output operation description: 2-stage preset value $>$ Start Point = 1-stage preset value

OUT1 occurs when RESET OFF.

- Output operation description: 2-stage preset value $>$ Start Point $>$ 1-stage preset value

| Mode | Counting chart and output operation description |  |
| :---: | :---: | :---: |
|  | Input operation mode =UP, UP - 1 / 2 | Input operation mode = UD - A B / C |
| F |  |  |
|  | OUT1 does not execute. OUT2 occurs when reaching 2 -stage preset value. | Count down and OUT1 occurs when reaching 1-stage preset value. |

2. 1-stage preset value $\geq 2$-stage preset value (input operation mode: DN, DN-1, DN-2)

- Output operation description:

1-stage preset value > 2-stage preset value

| Mode | Input operation mode = DN, DN-1/2 |
| :---: | :---: |
| F |  |
|  | OUT1 does not execute. |

1 -stage preset value $=2$-stage preset value

## Mode Input operation mode <br> = DN, DN - 1 / 2

 RESET П П П ПF


OUT1 occurs when RESET OFF.

## Timer Operation

## Output operation mode

Power reset: There is no memory retention.
Initialize the display value and output state when power on again.
Power hold: There is memory retention.
Memorize the display value at the moment of power off, restoring the memorized display value and output state when power on gain

- Output type

One-shot output
Retained (hold) output One-shotoutput Retained (hold) output

| Mode | Time chart and output operation description |
| :---: | :---: |
| OND (Signal on delay) |  |
|  | - Power resetTime starts when INA input is ON. <br> Time is RESET during INA input is OFF. <br> When INA input is ON: Power on timestart operates, <br> Reset off time start operates.OUT2 (OUT) <br>  <br> T1 $=$ setting time 1 <br> T2 $=$ setting time 2 |
| OND. 1 (Signal on delay 1) |  |
|  | - Power resetTime starts when INA input is ON.When INAinput is ON: Power on time start operates,Reset off time start operates.Only the first signal is valid in case INA input signal is <br> repeatedly applied.OUT2 (OUT)T1 $=$ setting time 1 |
| OND. 2 <br> (Power on delay) |  |
|  | - Power hold OOWER <br> Powerontime start (no INAfunction) OUT1 <br> Time isRESET when RESET is ON.  <br> Time starts when RESET ON $\rightarrow$ OFF. OUT2 (OUT) <br>  T1 $=$ setting time 1 <br> T2 $=$ setting time 2  |

POWER
INA (START)
INH (INHIBIT)
RESET

| Mode | Time chart and output operation description |  |
| :---: | :---: | :---: |
| FLK. 1 <br> (Flicker 1) |  |  |
|  | - Power reset, retained (hold) output <br> Time starts when INA input is ON. <br> When INA input is ON: Power on time start operates, Reset off time startoperates. <br> Only the first signal is valid in case INA input signal is repeatedly applied. <br> In case of using the contact output, min. setting time must be set over 100 ms . |  |
|  |  |  |
|  | - Power reset, One-shot output <br> Time starts when INAinput is ON. <br> When INA input is ON: Power on time start operates, <br> Reset off time start operates. <br> Only the first signal is valid in case INA input signal is repeatedly applied. <br> In case of using the contact output, min. setting time must be set over 100 ms . |  |
| FLK. 2 <br> (Flicker 2) |  |  |
|  | - Power hold, retained (hold) output <br> Time starts when INA input is ON. <br> When INA input is ON: Power on time start operates, <br> Reset off time startoperates. <br> Control output will be reversed when it reaches to setting time. But, at the initial Start, OUT2 control output is OFF. <br> ncase of using the contact output, min. setting time must be set over 100 ms . |  |
|  |  |  |
|  | - Power hold, One-shot output <br> Time starts when INA input is ON. <br> When INA input is ON: Power on time start operates, <br> Reset off time startoperates. <br> In case of using the contact output, min. setting time must be set over 100 ms . |  |
| INT <br> (Interval) |  |  |
|  | - Power reset <br> Control output turns ON and time starts when INA signal turns ON. <br> Time is RESET when INA input is OFF. <br> When INA input is ON: Power on time start operates, Reset off time startoperates. <br> When reaching the setting time, Auto reset is activated. Control output is ON when Time is progressing. | POWER $\square$ <br> INA <br> OUT2 <br> (OUT) $\square$ $\mathrm{T}=\text { setting time }$ |




## - Timer operation of indicator model

\section*{| Mode | Time chart and output operation description |
| :--- | :--- |}

Timechart and output operation description
• Memory retention parameter=CLR
POWER
INA (START)
INH (INHIIT)
RESET
Time range

TOTAL

TOTAL

[^1]When time reaches the setting time, time progress stops and is flashed.
When RESET input is ON, progressed time is initialized.
Time chart and output operation description
－Memory retention parameter＝CLR

ONT．D
（On time
display）

－ON time indication mode of INA input
Time reset start operates when INA input turns ON．
Time progress stops while INA input is OFF．
If progress time is greater than setting time when INA input turns off，display value flashes and operation stops until reset signal is applied．

## 0 time setting

It is available to set in output operation mode：OND，OND．1，OND．2，NFD，NFD．1．
－Output type
One－shot output
Retained（hold）output
One－shot output Retained（hold）output

| Mode | Time chart at 0 time setting and operation description |  |
| :---: | :---: | :---: |
|  | Setting time $1=0$ | Setting time $2=0$ |
| OND |  |  |
| OND． 1 |  |  |
| OND． 2 |  |  |


| Mode | Time chart at 0 time setting and operation description |  |
| :---: | :---: | :---: |
|  | Off＿delay setting time $=0$ | On＿delay setting time $=0$ |
| NFD |  |  |
| NFD． 1 |  |  |

$\square$ Setting when 1－stage preset value $>$ 2－stage preset value
－Output operation mode：OND，OND．1，OND． 2
UP mode：OUT1 output does not turn ON．
DOWN mode：OUT1 output does not turn ON．

$$
\text { In 1-stage preset value }=2 \text {-stage preset value, when Start signal is }
$$

applied, OUT1 turns ON immediately.

## Segment Table

The segments displayed on the product indicate the following meanings．It may differ depending on the product．

| 7 segment |  |  |  | 11 segment |  |  |  | 12 segment |  |  |  | 16 segment |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | I | 0 | 0 | 1 | I | 0 | 0 | ＇ | I | 0 | 0 | I | I |
| 1 | 1 | ل | J | 1 | 1 | 」 | J | 1 | 1 | U | J | 1 | 1 | J | J |
| 2 | 2 | $\longleftarrow$ | K | 2 | 2 | ＇i | K | 2 | 2 | K | K | 2 | 2 | $k$ | K |
| 3 | 3 | L | L | $\exists$ | 3 | L | L | 3 | 3 | L | L | 3 | 3 | L | L |
| 4 | 4 | $\bar{\square}$ | M | 4 | 4 | M | M | 4 | 4 | M | M | 4 | 4 | M | M |
| 5 | 5 | $\bigcirc$ | N | 5 | 5 | N | N | 5 | 5 | N | N | 5 | 5 | i | N |
| 5 | 6 | 0 | 0 | 5 | 6 | － | 0 | 5 | 6 | 0 | 0 | 6 | 6 | 0 | 0 |
| 7 | 7 | P | P | 7 | 7 | P | P | 7 | 7 | P | P | 7 | 7 | P | P |
| 8 | 8 | 9 | Q | 日 | 8 | 4 | Q | 日 | 8 | 0 | Q | 8 | 8 | 0 | Q |
| 9 | 9 | r | R | 9 | 9 | R | R | 9 | 9 | R | R | 9 | 9 | P | R |
| R | A | 5 | S | A | A | 5 | S | A | A | 5 | S | R | A | 5 | S |
| $b$ | B | $t$ | T | $b$ | B | $t$ | T | $b$ | B | $t$ | T | B | B | T | T |
| ［ | C | $U$ | U |
| $d$ | D | $u$ | V | $d$ | D | V | V | $d$ | D | $v^{\prime}$ | V | I | D | ！ | V |
| E | E | $\because$ | W | E | E | $\omega$ | W | E | E | i | W | E | E | H | W |
| F | F | 4 | X | F | F | $\because$ | X | F | F | $\because$ | X | F | F | ＊ | X |
| E | G | 4 | Y | － | G | $y$ | Y | 5 | G | $y$ | Y | 5 | G | i | Y |
| H | H | 三 | Z | H | H | 7 | Z | H | H | 7 | Z | H | H | $\because$ | Z |


[^0]:    Select decimal point: -------, prescale decimal point: ------- and set prescale value: 0.069

[^1]:    Timestarts during INA input is ON.
    Timestops during INA input is OFF,

