NDE

Panasonic ideas for life

RoHS compliant

1a 5A slim power relay
LD-P RELAYS (ALDP)

FEATURES

1. Nominal switching capacity:

5A 277V AC

2. Ambient temperature:

$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}$
3. Excellent heat resistance and tracking performance
EN60695 (GWT2-11, GWFI2-12, GWIT2-13) data available
(Please consult us for details.)
4. Slim type: $\mathbf{2 0 . 3}(\mathrm{L}) \times \mathbf{7 . 0}(\mathrm{W}) \times \mathbf{1 5}(\mathrm{H})$
$\mathrm{mm} .799(\mathrm{~L}) \times .276(\mathrm{~W}) \times .591(\mathrm{H})$ inch

TYPICAL APPLICATIONS

- Boilers
- Air conditioner
- Refrigerator
- Hot water units
- Microwave ovens
- Fan heaters

ORDERING INFORMATION

Note: Certified by UL/C-UL and VDE

TYPES

Contact arrangement	Nominal coil voltage	Part No.
1 Form A	5V DC	ALDP105W
	6V DC	ALDP106W
	9V DC	ALDP109W
	12 V DC	ALDP112W
	18V DC	ALDP118W
	24V DC	ALDP124W

Packing quantity: Carton 100 pieces, Case 500 pieces
Note: The "W" at the end of the part number only appears on the inner and outer packaging. It does not appear on the relay itself.
Please consult with our sales office on a tube packing type.

RATING

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	Coil resistance [$\pm 10 \%$] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
5V DC	$75 \% \mathrm{~V}$ or less of nominal voltage (Initial)	$5 \% \mathrm{~V}$ or more of nominal voltage (Initial)	40.0 mA	125Ω	200 mW	$130 \% \mathrm{~V}$ of nominal voltage
6V DC			33.3 mA	180Ω		
9V DC			22.2 mA	405Ω		
12 V DC			16.7 mA	720Ω		
18 V DC			11.1 mA	1,620		
24 V DC			8.3 mA	2,880 ${ }^{\text {a }}$		

2. Specifications

Characteristics	Item		Specifications
Contact	Arrangement		1 Form A
	Contact resistance (Initial)		Max. $100 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)
	Contact material		AgNi type
Rating	Nominal switching capacity (resistive load)		5A 277V AC
	Max. switching power (resistive load)		1,385VA
	Max. switching voltage		277 V AC
	Max. switching current		5A
	Min. switching capacity (reference value)**		$100 \mathrm{~mA} \mathrm{5V} \mathrm{DC}$
Electrical characteristics	Insulation resistance (Initial)		Min. 1,000M Ω (at 500V DC) Measurement at same location as "Breakdown voltage" section.
	Breakdown voltage (Initial)	Between open contacts	750 Vrms for 1 min . (Detection current: 10 mA)
		Between contact and coil	$4,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA)
	Surge breakdown voltage*2 (Between contact and coil) (Initial)		10,000 V
	Temperature rise (coil)		Max. $30^{\circ} \mathrm{C} 86^{\circ} \mathrm{F}$ (By resistive method, nominal coil voltage applied to the coil; contact carrying current: 5 A , at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$)
	Operate time (at nominal voltage) (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 10 ms (excluding contact bounce time.)
	Release time (at nominal voltage) (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 10 ms (excluding contact bounce time) (With diode)
Mechanical characteristics	Shock resistance	Functional	$300 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$.)
		Destructive	$1,000 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms .)
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 1.5 mm (Detection time: $10 \mu \mathrm{~s}$.)
		Destructive	10 to 55 Hz at double amplitude of 1.5 mm
Expected life	Mechanical (at 180 times/min.)		Min. 5×10^{6}
	Electrical (at 20 times/min.)		Min. 2×10^{5} (5A 125V AC at rated load), Min. 10^{5} (5A 250V AC at rated load)
Conditions	Conditions for operation, transport and storage ${ }^{* 3}$		Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}$; Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)
	Max. operating speed (at nominal switching capacity)		20 times/min.
Unit weight			Approx. 4 g .14 oz

Notes: *1. This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.
*2. Wave is standard shock voltage of $\pm 1.2 \times 50 \mu \mathrm{~s}$ according to JEC-212-1981
*3. The upper limit of the ambient temperature is the maximum temperature that can satisfy the coil temperature rise value. Refer to Usage, transport and storage conditions in NOTES.

REFERENCE DATA

4-(1). Operate time
Sample: ALDP112, 30 pcs.

2. Life curve

4-(2). Release time (without diode) Sample: ALDP112, 30 pcs.

3. Coil temperature rise

Sample: ALDP112, 6 pcs. Point measured: inside the coil Contact current: 0 A, 5 A

4-(3). Release time (with diode) Sample: ALDP112, 30 pcs.

5. Electrical life test
(5A 250V AC Resistive load)
Sample: ALDP112, 6 pcs.
Operation frequency: 20 times $/ \mathrm{min}$.
($\mathrm{ON}: \mathrm{OFF}=1.5 \mathrm{~s}: 1.5 \mathrm{~s}$)
Circuit:

Change of pick-up and drop-out voltage

Change of contact resistance

DIMENSIONS (mm inch)
The CAD data of the products with a
CAD Data
mark can be downloaded from: http://industrial.panasonic.com/ac/e/

Dimension:
Less than 1mm .039inch:
General tolerance
$\pm 0.1 \pm .004$
Min. 1 mm .039 inch less than 3 mm .118 inch: $\pm 0.2 \pm .008$
Min. 3mm . 118 inch:
$\pm 0.3 \pm .012$

PC board pattern (Bottom view)

Schematic (Bottom view)

Tolerance: $\pm 0.1 \pm .004$

SAFETY STANDARDS

Certification authority	
UL/C-UL	$5 \mathrm{~A} 277 \mathrm{~V} \mathrm{AC} 85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$
	5A 30V DC
	5A $250 \mathrm{~V} \mathrm{AC} \cos \phi=1.085^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$
VDE	5A 30V DC Oms

NOTES

Usage, transport and storage conditions

1) Temperature:
-40 to $+85^{\circ} \mathrm{C}-40$ to $+185^{\circ} \mathrm{F}$
2) Humidity: 5 to 85% RH
(Avoid freezing and condensation.)
The humidity range varies with the temperature. Use within the range indicated in the graph below.
3) Atmospheric pressure: 86 to 106 kPa

Temperature and humidity range for usage, transport, and storage

Certification

1) This relay is UL/C-UL certified.

UL/C-UL standards:
5 A 277 V AC $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$
5 A 30 V DC
2) This relay is certified by VDE. VDE standards:

5 A 250 V AC $\cos \phi=1.085^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$

 5 A 30 V DC 0 ms3) UL/C-UL and VDE certified ratings are displayed on the packaging box.
(On the relay, only the certification marks are shown and not the certified ratings. Please refer to the product specification diagrams to see what is stamped.)

- Part number display

The " W " at the end of the part number only appears on the inner and outer packaging. It does not appear on the relay itself.
\square Creepage distance and clearances between contact and coil: Min. 6 mm . 236 inch

