Motor Controllers Reversing with Interlock Types RRC 40 HD12/RRO 12..

Control and output modules for starting/ reversing of 3-phase induction motors

• Rated operational current: 3 x 10, 25 and 50 AACrms

CARLO GAVAZZI

- Rated operational voltage: Up to 400 VACrms
- Control voltage range: 10 to 32 VDC
- LED indication for line ON and direction of motor rotation

Product Description

The control module RRC 40 HD12 is used with output module RRO 12.. to achieve starting and/or reversing of 3-phase induction motors. When the motor is fully operating, the module delivers a signal which can be used to connect a contactor in parallel to the output module thereby limiting the power dissipation of the device and eliminating the need for a large heatsink. The control module also features LED indication for line ON and direction of motor rotation.

Ordering Key	RRC 40 HD 12
Solid State Relay Reversing Control module Output module Rated operational voltage Rated operational current _ Control voltage Non-rep. peak voltage	
	 RRO 1210

Type Selection

Туре	Rated operational voltage	Control voltage	Non-rep. voltage
C: Control module	40: 120/208 VACrms 230/400 VACrms	HD: 10 to 32 VDC	12: 1200 Vp
Туре	Non-rep. voltage	Rated operational current	
O: Output module	12: 1200 Vp	10: 3 x 10 AACrms 25: 3 x 25 AACrms 50: 3 x 50 AACrms	

Selection Guide for Output Modules

Non-rep. voltage Rated operational current 10 AACrms		25 AACrms	50 AACrms	
1200 Vp	RRO 1210	RRO 1225	RRO 1250	

General Specifications

Operational voltage range Line to line	120 to 420 VACrms
Non-rep. peak voltage	≥ 1200 V _p
Operational frequency range	25 to 70 Hz
Supply current 32 VDC @ 150 mA output current @ no output current	≤ 200 mArms ≤ 35 mArms
Approval	CSA

Control Input Specifications

Control voltage range Forward or reverse	10 to 32 VDC
Control current (no output)	
Active input @ 32 VDC	≤ 35 mArms
Inhibit input @ 32 VDC	≤ 16 mArms
Adjustable dead time $F \rightarrow R$	0.02 to 1.5 s
Adjustable dead time $R \rightarrow F$	0.02 to 1.5 s
Response time Input to trigger outputs	≤ 1/2 cycle

Control Output Specifications

Minimum output voltage	power supply less 3.0 VDC
Output current short-circuit protected	150 mA DC
Thermal Specificat	ions

Operating temperature	-20 to +80°C (-4 to +176°F)
Storage temperature	-40 to +100°C (-4 to 212°F)

Insulation Control Module

Rated insulation voltage	
Input to trigger outputs	


≥ 4000 VACrms

Mode of Operation

The control unit RRC 40 The control unit has built-in ing in the opposite direction. HD12 is used together with interlocking and adjustable This time allows the remadelay time between forward output module type RRO 12.. nence field in the motor to be to achieve starting and/or reand reverse. reduced before the field is versing of 3-phase induction The motor is switched off durreapplied, thereby reducing motors. ing the delay time before startthe reversing current.

The control unit has LED indication for line ON and direction of motor rotation (forward or reverse). A short circuit protected output indicates relay ON.

Operation Diagram

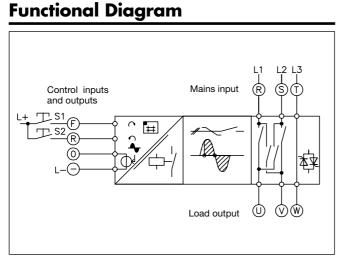
CARLO GAVAZZI

General Specifications Output Module

	RRO 1210	RRO 1225	RRO 1250	
Operational voltage range	120 to 420 VACrms	120 to 420 VACrms	120 to 420 VACrms	
Approval	CSA	CSA	CSA	

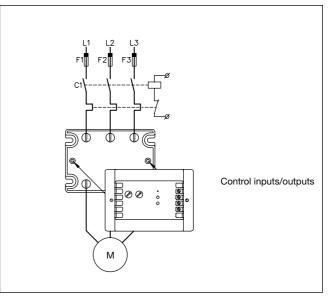
Output Specifications Output Module

	RRO 1210	RRO 1225	RRO 1250
Rated operational current AC 1 AC 3	3 x 10 Arms 3 x 3 Arms	3 x 25 Arms 3 x 5 Arms	3 x 50 Arms 3 x 15 Arms
Non-rep. peak voltage	\geq 1200 V _p	\geq 1200 V _p	\geq 1200 V _p
Off-state leakage current	≤ 10 mArms	≤ 10 mArms	≤ 10 mArms
On-state voltage drop	≤ 1.6 Vrms	≤ 1.6 Vrms	≤ 1.6 Vrms
I ² t for fusing t=1-10 ms	≤ 130 A ² s	≤ 310 A²s	≤ 1800 A²s
Critical dl/dt	≥ 50 A/µs	≥ 50 A/μs	≥ 50 A/μs
Non-rep. surge current t=20 ms	160 A _p	250 A _p	600 A _p


Thermal Specifications Output Module

	RRO 1210	RRO 1225	RRO 1250	
Operating temperature	-20 to +80°C (-4 to +176°F)	-20 to +80°C (-4 to +176°F)	-20 to +80°C (-4 to +176°F)	
Storage temperature	-40 to +100°C (-40 to +212°F)	-40 to +100°C (-40 to +212°F)	-40 to +100°C (-40 to +212°F)	
Rth junction to case	≤ 1 K/W	≤ 0.75 K/W	≤ 0.35 K/W	

Insulation Output Module


Rated insulation voltage Output to case

≥ 4000 VACrms

Wiring Diagram

Mounting and connection of control module and output module

Heatsink Dimensions (load current versus ambient temperature)

RRO 1210						
Load currer	nt [A]		Thermal resistance [K/W]		Power dissipation [W]	
16	1.4	1.1	0.91	0.68	0.46	44
15	1.5	1.3	1	0.75	0.50	40
14	1.7	1.4	1.1	0.82	0.55	36
13	1.8	1.5	1.2	0.91	0.61	33
12	2	1.7	1.4	1	0.68	30
11	2.3	1.9	1.5	1.1	0.76	26
10	2.6	2.2	1.7	1.3	0.86	23
9	3	2.5	2	1.5	0.99	20
7	4	3.4	2.7	2	1.4	15
5	6.1	5.1	4.1	3.1	2	10
3	10.9	9.1	7.3	5.5	3.6	5
1	-	29.6	23.7	17.8	11.8	2
'	20	30	40	50	60	TA
					Ambient	temp. [°C]

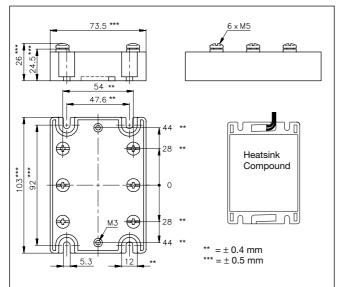
RRO 1225

Load current [A]		Thermal resistance [K/W]			Power dissipation [W]	
25	0.92	0.76	0.60	0.44	0.28	63
22.5	1.1	0.91	0.73	0.55	0.37	55
20	1.3	1.1	0.85	0.64	0.43	47
17.5	1.5	1.3	1	0.76	0.51	39
15	1.9	1.5	1.2	0.93	0.62	32
12.5	2.3	1.9	1.6	1.2	0.77	26
10	3	2.5	2	1.5	1	20
7.5	4.2	3.5	2.8	2.1	1.4	14
5	6.7	5.6	4.4	3.3	2.2	9
2.5	14	11.7	9.4	7	4.7	4
	20	30	40	50	60	T _A
					Ambien	t temp. [°C]

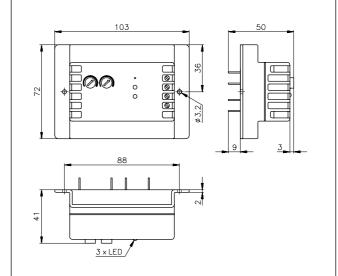
RRO 1250

Load curre	nt [A]	Thermal resistance [K/W]			Power dissipation [W]	
					-1	
50	0.48	0.40	0.32	-	-	126
45	0.55	0.46	0.37	0.27	-	109
40	0.64	0.53	0.43	0.32	-	94
35	0.76	0.63	0.50	0.38	0.25	79
30	0.91	0.76	0.61	0.46	0.30	66
25	1.1	0.95	0.76	0.57	0.38	53
20	1.5	1.2	0.99	0.74	0.49	41
15	2.1	1.7	1.4	1	0.68	29
10	3.2	2.7	2.1	1.6	1.1	19
5	6.7	5.6	4.5	3.4	2.2	9
	20	30	40	50	60	TA
					Ambient	temp. [°C]

Heatsink Selection


Carlo Gavazzi Heatsink (see Accessories)	Thermal resistance		
No heatsink required	R _{th S-A} > 8.0 K/W		
RHS 300 Assy or backplate	5.0 K/W		
RHS 301 Assy	0.8 K/W		
RHS 301 F Assy	0.25 K/W		
Consult your distributor	< 0.25 K/W		

Compare the value found in the load current versus temperature chart with the standard heatsink values and select the heatsink with the next lower value.



Dimensions

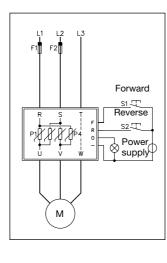
RRO 12..

RRC 40 HD 12

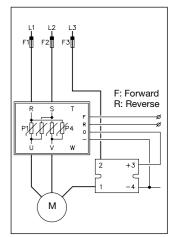
Housing Specifications

Weight	Approx. 275 g
Housing material Colour	Noryl, glass-reinforced Black
Base plate	Aluminium, nickel-plated
Potting compound	Polyurethane, black
Relay Mounting screws Mounting torque	M5 ≤ 1.5 Nm
Control terminal Mounting screws Mounting torque	M3 ≤ 0.5 Nm
Power terminal Mounting screws Mounting torque	M5 x 6 ≤ 1.5 Nm

Accessories


Heatsinks Varistors Fuses Temperature limit switch Power supply For further information refer to "General Accessories".

Applications

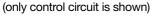

Normal use

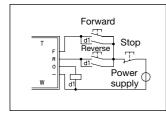
When S1 is closed, the motor starts in forward direction. Closing S2 when S1 is already closed has no effect. When S1 is opened again, the motor stops.

When closing S2, the motor starts in reverse direction. Closing S1 when S2 is already closed has no effect due to the built-in interlocking function.

Switching the 3rd phase by means of a 1-phase SSR

F1 - F2: Ultrafast fuses with l^2t rated lower than the l^2t value for the output module.


F3: Ultrafast fuse with I²t rated lower than the corresponding value for the single-phase relay.


P1 - P4: Varistors for 420 V mains with a diameter of 20 mm.

Applications (cont.)

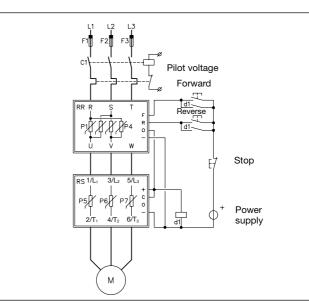
Start forward, start reverse and stop

Connection to the mains

As this type of SSR has a semiconductor path between 2 of the 3 lines through which a short circuit may occur, it is always recommended to protect the relay against surge current and voltage transients.

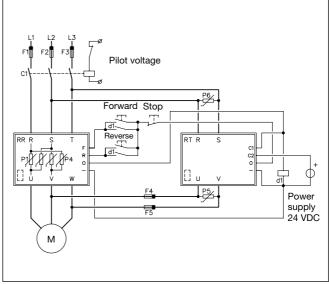
The protection consists of 2 elements:

1. An ultrafast fuse with l²t rated lower than the max. load integral (l²t) of the output module.


2. A voltage-dependent resistor (MOV) to prevent voltages higher than the blocking voltage of the out-put modules. Higher voltages will switch the output module on for a short period of time causing undesirable fuse blowing.

F1 - F3: Ultrafast fuses with l2t Interconnection of soft starting and reversing SSRs rated lower than the l2t value for the output module. F3 is optional since there are no semiconductors in phase T to W. F1 $\begin{bmatrix} L_1 & L_2 & L_3 \\ F1 & F2 & F3 \end{bmatrix}$

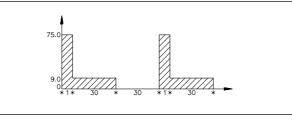
P1 - P4: Varistors for 420 V mains with a diameter of 20 mm.


Since there is no protective circuitry in RRC 40 HD 12, the motor must be protected in the usual way, i.e. either by a theremal relay, a PTC-resistor or a Klixon bimetal temperature switch in the motor windings.

F1 - F3: Ultrafast fuses with l²t rated lower than the l²t value of the output modules.

P1 - P7: Varistors for 420 V mains with a diameter of 20 mm.

Interconnection of braking and reversing SSRs



F1 - F5: Ultrafast fuses with l²t rated lower than the l²t value of the output module.

P1 - P6: Varistors for 420 V mains with a diameter of 20 mm.

Applications (cont.)

Thermal considerations Normally the maximum load is limited by the thermal relay protecting the motor. If the heatsink is calculated on the basis of this value, overcurrent will make the thermal relay trip before over-temperature appears on the heatsink. The heatsink is selected according to the chart showing maximum ambient temperature versus load current. The power dissipation can also be seen from the chart.

Intermittent use

If a motor is stopped and started frequently and with full load, the output module must be selected accordingly. It might also be useful to consult the motor manufacturer for further motor specifications.

Power dissipation in the SSR can be found on the basis of the effective load current:

$$\sqrt{\frac{I_{start}^2 \times t_{start} + I_n^2 \times t_{oper}}{t_{start} + t_{oper} + t_{pause}}}$$

Example:

 $\begin{array}{l} \text{2-pole motor: 5.5 kW} \\ \text{I}_{\text{start}} = 75 \text{ A}, \text{ I}_{\text{n}} = 9 \text{ A}, \text{ T}_{\text{a}} = 50^{\circ}\text{C} \\ \text{t}_{\text{start}} = 1 \text{ s}, \text{ t}_{\text{operating}} = 30 \text{ s}, \\ \text{t}_{\text{pause}} = 30 \text{ s} \end{array}$

 $I_{rms} =$

$$\sqrt{\frac{75^2 \, x \, 1 + 9^2 \, x \, 30}{1 + 30 + 30}}$$

 $I_{rms} = 11.5 \text{ Arms}$

Overload table

	Type of relay			
Time	10 A relay	25 A relay	50 A relay	
[s]	[Arms]	[Arms]	[Arms]	
0.2	35	92	141	
0.4	30	78	115	
0.6	27	68	100	
0.8	25.5	65	94	
1.0	24	60	86	
2	20	46	76	
4	18	40	62	
6 8 10 12 14 16 18 20	16 14 13 12.5 12.5 12 12 12	38 35 34 32 31 31 30 30	59 53 50 47 46 46 46 45 45	

Load current versus time

CARLO GAVAZZI

Applications (cont.)

Selection Guide

400 VACrms motors 50/60 Hz I_{operating}/I_{start} [A_{rms}]

Size of motor [kW]	2-pole ns = 3000 rpm	4-pole ns = 1500 rpm	6-pole ns = 1000 rpm	Start time [s]	10 A 25 A 50 A poles poles poles 2 4 6 2 4 6 2 4 6
1,1	2.6/14.3	2.9/13	3.4/12	0,5 1 2 4 6 8 10	
1,5	3.5/22.75	3.7/18	4.2/17	0,5 1 2 4 6 8 10	
2,2	4.7/32.9	5.2/26	5.6/28	0,5 1 2 4 6 8 10	
3	6.2/43.4	6.9/38	7.6/41	0,5 1 2 4 6 8 10	
4	8.1/55.9	9/60	9/48	0.5 1 2 4 6 8 10	
5,5	10.7/74.9	12/84	12.7/60	0.5 1 2 4 6 8 10	

CARLO GAVAZZI