

- One RS232 and RS485 port (on request)
- Communication protocol: MODBUS-RTU, iFIX SCADA compatibility
- MODBUS TCP/IP Ethernet port (on request)
- BACnet-IP over Ethernet port (on request)
- BACnet MS/TP over RS485 (on request)
- Ethernet/IP port (on request)
- Up to 2 digital outputs (pulse, alarm, remote control) (on request)
- Up to 4 freely configurable virtual alarms
- Up to 2 analogue outputs (+20mA, +10VDC) (on request)

Product Description

Three-phase smart power analyzer with built-in advanced configuration system and LCD data displaying. Particularly recommended for the measurement of the main electrical variables. WM30 is based on a modular housing for panel mounting with IP65 (front) protection degree. Moreover, the analyzer can be provided with digital outputs that can be either for pulse proportional to the
active and reactive energy being measured or/and for alarm outputs. The instrument can be equipped with the following modules: RS485/RS232, Ethernet, BACnet-IP or BACnet MS/TP communication ports, pulse and alarm outputs. Parameters programming and data reading can be easily performed by means of WM3040Soft.

- Class 0.5 (kWh) according to EN62053-22
- Class C (kWh) according to EN50470-3
- Class 2 (kvarh) according to EN62053-23
- Accuracy $\pm 0.2 \%$ RDG (current/voltage)
- Instantaneous variables readout: 4x4 DGT
- Energies readout: 9+1 DGT
- System variables: VLL, VLN, A, VA, W, var, PF, Hz, Phase-sequence-asymmetry-loss.
- Single phase variables: VLL, VLN, AL, An (calculated), VA, W, var, PF
- Both system and single phase variables with average and max calculation
- Harmonic analysis (FFT) up to the 32nd harmonic (current and voltage)
- Energy measurements (imported/exported): total and partial kWh and kvarh
- Energy measurements according to ANSI C12.20 CA 0.5 , ANSI C12.1 (revenue grade)
- Run hours counter (8+2 DGT)
- Real time clock function
- Application adaptable display and programming procedure (Easyprog function)
- Universal power supply: 18 to 60VAC/DC, 90 to 260AC/VDC
- Front dimensions: 96x96 mm
- Front protection degree: IP65, NEMA4X, NEMA12

How to order WM30-96 AV5 3 H R2 A2 S1 XX

Type Selection

Range codes		System	
AV4:	$\begin{aligned} & 400 / 690 V_{\mathrm{LL}} \mathrm{AC} \\ & \text { 1(2)A } \end{aligned}$	3:	balanced and unbalanced load:
	Vin: 160 V to 480V ${ }_{\text {Ln }}$		3-phase, 4-wire;
	$\mathrm{V}_{\mathrm{LL}}: 277 \mathrm{~V}$ to 830 V LL		3-phase, 3-wire;
AV5:	$400 / 690 V_{\text {LL }}$ AC		2-phase, 3-wire;
	5(6)A		1-phase, 2-wire
	$V_{\text {LN: }} 160 \mathrm{~V}$ to $480 \mathrm{~V}_{\text {Ln }}$ $\mathrm{V}_{\mathrm{LL}}: 277 \mathrm{~V}$ to $830 \mathrm{~V}_{\mathrm{LL}}$		
AV6:	100/208V LL AC	Options	
	5(6)A		
	$\mathrm{V}_{\text {LN: }}$: 40 V to 144 V LN	XX:	none
	$\mathrm{V}_{\mathrm{LL}}: 70 \mathrm{~V}$ to $250 \mathrm{~V}_{\mathrm{LL}}$		
AV7:	100/208V ${ }_{\text {L }}$ AC		
	1(2)A		
	$\mathrm{V}_{\text {Ln: }} 40 \mathrm{~V}$ to 144 V LN		
	$\mathrm{V}_{\mathrm{LL}}: 70 \mathrm{~V}$ to $250 \mathrm{~V}_{\mathrm{LL}}$		

Power supply		A Outputs	
H:	$\begin{aligned} & 90 \text { to } 260 \mathrm{~V} \text { AC/DC } \\ & (48 \text { to } 62 \mathrm{~Hz}) \end{aligned}$	XX:	none
		O2:	Dual channel static
L:	18 to 60VAC/DC (48 to 62 Hz)		output
		R2:	Dual channel relay output
Communication		B Outputs	
XX:	none	XX:	none
S1: E2:	RS485/RS232 port	A2:	Dual channel 20 mA
	Ethernet / Internet port	V2:	DC output Dual channel 10V
B1:	BACnet (IP) over		DC output
	Ethernet		
B3:	BACnet (MS/TP)		
	over RS485		
E6:	Ethernet/IP port		

Position of modules and combination

Ref	Description	Main features	Part number	Pos. A	Pos. B	Pos. C
1	WM30 base provided with display, power supply, measuring inputs	- Inputs/system: AV5.3 - Power supply: H	WM30 AV5 3 H			
2		- Inputs/system: AV6.3 - Power supply: H	WM30 AV6 3 H			
3		- Inputs/system: AV5.3 - Power supply: L	WM30 AV5 3 L			
4		- Inputs/system: AV6.3 - Power supply: L	WM30 AV6 3 L			
5	Dual relay output (SPDT)	- 2-channel - Alarm or/and pulse output	M O R2 (1)	X		
6	Dual static output (AC/DC Opto-Mos)	- 2-channel - Alarm or/and pulse output	M O O2 (1)	X		
7	Dual analogue output (+20mADC)	- 2-channel	M O A2 (2)		X	
8	Dual analogue output (+10VDC)	- 2-channel	M O V2 (2)		X	
9	RS485 / RS232 port module	- Max. 115.2 Kbps	M C 485232 (3)			X
10	Ethernet port module	- RJ45 10/100 BaseT	M C ETH (3)			X
11	BACnet-IP port module	- Based on Ethernet bus	M C BAC IP (3)			X
12	BACnet-MS/TP port module	- Over RS485	M C BAC MS (3)			X
13	Ethernet/IP	- Based on Ethernet	M C El (3)			X

NOTE:

(1) Only one A type module per meter in a maximum combination of 3 total mixed modules on the same meter.
(2) Only one B type module per meter in a maximum combination of 3 total mixed modules on the same meter.
(3) Only one C type module per meter in a maximum combination of 3 total mixed modules on the same meter.

The B-C position is not mandatory, if to fulfil the application, module " A " is not necessary, just " B " can be mounted.

Another example: if modules " A " and " B " (anyone) are not needed, then just module " C " maybe be mounted. If " A " module is needed, it is mandatory to put it in "A" position.

When no modules are mounted, then WM30-96 becomes a simple indicator.

CARLO GAVAZZI

Input specifications

Rated inputs	System type: 1, 2 or 3phase
Input type	Galvanic insulation by means of built-in CT's
Current range (by CT)	AV5 and AV6: 5(6)A AV4 and AV7: 1(2)A
Voltage (by direct connection or VT/PT)	AV4, AV5: 400/690VLL; AV6, AV7: 100/208VLL
Accuracy (Display + RS485) (@25 ${ }^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$, R.H. $\leq 60 \%, 45$ to 65 Hz)	In: see below, Un: see below
AV4 model	In: 1A, Imax: 2A; Un: 160 to 480 VLN (277 to 830 VLL)
AV5 model	In: 5A, Imax: 6A; Un: 160 to 480 VLN (277 to 830 VLL)
AV6 model	In: 5A, Imax: 6A; Un: 40 to 144VLN (70 to 250VLL)
AV7 model	In: 1A, Imax: 2A; Un: 40 to 144VLN (70 to 250VLL)
Current AV4, AV5, AV6, AV7 models	From 0.01 In to 0.05 In : $\pm(0.5 \%$ RDG +2 DGT) From 0.05In to Imax: $\pm(0.2 \%$ RDG $+2 \mathrm{DGT})$
Phase-neutral voltage	In the range Un: \pm (0,2\% RDG + 1DGT)
Phase-phase voltage	In the range Un: $\pm(0.5 \%$ RDG +1DGT)
Frequency	$\pm 0.01 \mathrm{~Hz}$ (45 to 65 Hz)
Active and Apparent power	0.01 In to 0.05 In , PF 1 : $\pm(1 \% \mathrm{RDG}+1 \mathrm{DGT})$ From 0.05In to Imax PF 0.5L, PF1, PF0.8C: $\pm(0.5 \%$ RDG +1 DGT)
Power Factor	$\begin{aligned} & \pm[0.001+0.5 \%(1.000-\text { "PF } \\ & \text { RDG")] } \end{aligned}$
Reactive power	0.02 In to $0.05 \mathrm{In}, \operatorname{sen} \varphi 1$: $\pm(1.5 \% \mathrm{RDG}+1 \mathrm{DGT})$ 0.05 In to Imax, $\operatorname{sen} \varphi$ 1: $\pm(1 \% R D G+1$ DGT) 0.05 In to 0.1 In , $\operatorname{sen} \varphi$ 0.5L/C: $\pm(1.5 \% R D G+1 D G T)$ 0.1 In to Imax, $\operatorname{sen} \varphi 0.5 \mathrm{~L} / \mathrm{C}$: $\pm(1 \% \mathrm{RDG}+1 \mathrm{DGT})$
Active energy	Class 0.5 according to EN62053-22, ANSI C12.20 Class C according to EN50470-3.
Reactive energy	Class 2 according to EN62053-23, ANSI C12.1.
Start up current AV5, AV6	5 mA
Start up current AV4, AV7	1 mA

Energy additional errors

Influence quantities
Total Harmonic Distortion (THD)

Total Harmonic Distortion (THD) $\pm 1 \%$ FS (FS: 100\%)
AV4: Imin: 5mARMS;
Imax: 3A; Umin: 30VRMS; Umax: 679V
AV5: Imin: 5mARMS; Imax:
15Ap; Umin: 30VRMS;
Umax: 679V
AV6: Imin: 5mARMS; Imax:
15Ap; Umin: 30VRMS;
Umax: 204V
AV7: Imin: 5mARMS; Imax:
3A; Umin: 30VRMS; Umax:
204V

	204V
Temperature drift	S200ppm $/{ }^{\circ} \mathrm{C}$
Sampling rate	3200 samples/s @ 50Hz, 3840 samples/s @ 60Hz
Measurements Method Coupling type	See "List of the variables that can be connected to:" TRMS measurements of distorted wave forms. By means of CT's
Crest factor	AV5, AV6: ≤ 3 (15A max. peak) AV4, AV7: ≤ 3 (3A max. peak)
Current Overloads	
Continuous (AV5 and AV6)	6A, @ 50Hz
Continuous (AV4 and AV7)	2A, @ 50 Hz
For 500ms (AV5 and AV6)	120A, @ 50Hz
For 500ms (AV4 and AV7)	40A, @ 50Hz

Voltage Overloads	
Continuous	1.2 Un
For 500ms	2 Un
Input impedance 400VL-L (AV4 and AV5) $>1.6 \mathrm{M} \Omega$ 208VL-L (AV6 and AV7) $>1.6 \mathrm{M} \Omega$ 5(6)A (AV5 and AV6) $<0.2 \mathrm{VA}$ 1(2)A (AV4 and AV7) $<0.2 \mathrm{VA}$ Frequency 40 to 440 Hz.	

CARLO GAVAZZI

Output specifications

Relay outputs (M O R2)	
Physical outputs	2 (max. 1 module per instrument)
Purpose	For either alarm output or pulse output
Type	Relay, SPDT type AC 1-5A @ 250VAC; AC 15-1.5A @ 250VAC DC 12-5A @ 24VDC; DC 13-1.5A @ 24VDC
Configuration	By means of the front keypad
Function	The outputs can work as alarm outputs but also as pulse outputs, remote controlled outputs, or in any other combination.
Alarms	Up alarm and down alarm linked to the virtual alarms other details see Virtual alarms
Min. response time	$\leq 200 \mathrm{~ms}$, filters excluded. Set-point on-time delay: "0 s".
Pulse	
Signal retransmission	Total: +kWh, -kWh, +kvarh, -kvarh. Partial: +kWh, -kWh, +kvarh, -kvarh.
Pulse type	The above listed variables can be connected to any output. Programmable from 0.001 to 10.00
Pulse duration	$\mathrm{kWh} / \mathrm{kvarh}$ per pulse. $\geq 100 \mathrm{~ms}<120 \mathrm{msec}$ (ON), $\geq 120 \mathrm{~ms}$ (OFF), according to EN62052-31
Remote controlled outputs	The activation of the outputs is managed through the serial communication port
Insulation	See "Insulation between inputs and outputs" table
Static outputs (M O O2)	Opto-Mos type
Physical outputs	2 (max. 1 module per instrument)
Purpose	For either pulse output or alarm output
Signal	Von:2.5VAC/DC/max.100mA
Configuration	Voff: 260VAC/DC max. By means of the front keypad
Function	The outputs can work as alarm outputs but also as pulse outputs, remote controlled outputs, or in any other combination.
Alarms	Up alarm and down alarm linked to the virtual alarms, other details see Virtual
Min. response time	$\leq 200 \mathrm{~ms}$, filters excluded. Set-point on-time delay: " 0 s"
Pulse	
Signal retransmission	Total: +kWh, -kWh, +kvarh, -kvarh. Partial: +kWh, -kWh,

Output specifications (cont.)

RS485 (on request) Type	Multidrop, bidirectional (static and dynamic variables)	Ethernet/Internet port (on request)	
Connections	2-wire	IP configuration	Default gateway
	Max. distance 1000m,	Port	Selectable (default 502)
	termination directly on the	Client connections	Max 5 simultaneously
Addresses		Connection	RJ45 10/100 BaseTX Max distance 100m
	of the front key-pad	Data (bidirectional)	
Protocol	MODBUS/JBUS (RTU)	Dynamic (reading only)	System and phase variables: see table "List of variables..."
Data (bidirectional)			
	System and phase variables: see table "List of variables..."	Static (reading and writing only)	variables..." ${ }^{\text {All the configuration }}$
Static (reading and writing only)	All the configuration parameters.	Note	parameters. With the rotary switch (on
Data format	1 start bit, 8 data bit, no/even/odd parity, 1 stop bit		the back of the basic unit) in lock position the
Baud-rate	Selectable: 9.6k, 19.2k,		modification of the
	$38.4 \mathrm{k}, 115.2 \mathrm{k} \mathrm{bit/s}$		programming parameters
Driver input capability	1/5 unit load. Maximum 160 transceivers on the same bus.		and the reset command by means of the serial communication is not
Note	With the rotary switch (on the back of the basic unit) in lock position the		allowed anymore. In this case just the data reading is allowed.
	modification of the programming parameters	Insulation	See "Insulation between inputs and outputs" table
	and the reset command by means of the serial communication is not	BACnet-IP (on request) Protocols	
	allowed anymore. In this case just the data reading is allowed.		BACnet-IP (for measurement reading purpose) and Modbus TCP/IP (for measurement reading purpose and for programming parameter purpose)
Insulation	See "Insulation between inputs and outputs" table		
RS232 port (on request)			
Type	Bidirectional (static and dynamic variables)	Device object instance	0 to 9999 selectable by key-pad
Connections	3 wires. Max. distance 15 m		0 to $2^{\wedge} 22-2=4.194 .302$, selectable by programming
Protocol Data (bidirectional) Dynamic (reading only)	MODBUS RTU /JBUS		software or by BACnet.
	System and phase variables: see table "List of variables..."	Protocol	BACnet MS/TP (for measurement reading purpose and to write object description)
Static (reading and writing only)	All the configuration parameters	Supported services	"I have", "l am", "Who has", "Who is", "Read
Data format	1 start bit, 8 data bit, no/even/odd parity, 1 stop bit	Supported objects	(multiple) Property" Type 2 (analogue value, including COV property),
Baud-rate	Selectable: 9.6k, 19.2k, $38.4 \mathrm{k}, 115.2 \mathrm{k}$ bit/s		Type 5 (binary-value for up to 16 virtual alarm re-
Note	With the rotary switch (on the back of the basic unit)		transmission) Type 8 (device)
	in lock position the modification of the	IP configuration	Static IP / Netmask / Default gateway
	programming parameters	BACnet-IP Port	Fixed: BACOh
	and the reset command by	Modbus Port	Selectable (default 502)
	means of the serial communication is not	Client connections	Modbus only: max 5 simultaneously
	allowed anymore. In this	Connections	RJ45 10/100 BaseTX
	is allowed.	DataDynamic (reading only)	Max. distance 100m
Insulation	See "Insulation between inputs and outputs" table		System and phase variables (BACnet-IP and

Output specifications (cont.)

Energy meters

Meters			
Total	4 (9+1 digit)		kWh/kvarh
Partial	4 (9+1 digit)		Max. 9,999,999,999
Pulse output	Connectable to total		kWh/kvarh.
	and/or partial meters	Energy Meters Total energy meters	
Energy meter recording	Storage of total and partial energy meters.		$+k W h,+k v a r h,-k W h$, -kvarh
	Energy meter storage format (EEPROM)	Partial energy meters	+kWh, +kvarh, -kWh, -kvarh

Harmonic distortion analysis

Analysis principle	FFT	System	The same for the other phases: L2, L3. The harmonic distortion can be measured in 3-wire or 4-wire systems. Tw: $0.02 \mathrm{sec} @ 50 \mathrm{~Hz}$ without filter
Harmonic measurement Current Voltage	Up to the 32nd harmonic Up to the 32nd harmonic		
Type of harmonics	THD (VL1 and VL1-N) The same for the other phases: L2, L3. THD (AL1)		

Display, LED's and commands

Main functions

CARLO GAVAZZI

General specifications

$\left.\begin{array}{l|l}\text { Operating temperature } & -25^{\circ} \mathrm{C} \text { to }+55^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F} \text { to }\right. \\ & \left.131^{\circ} \mathrm{F}\right)(\mathrm{R} . \mathrm{H} . \mathrm{from} 0 \text { to } 90 \% \\ \left.\text { non-condensing @ } 40^{\circ} \mathrm{C}\right) \\ \text { according to EN62053-21, }\end{array}\right\}$

Standard compliance	
Safety	IEC60664, IEC61010-1 EN60664, EN61010-1 EN62052-11.
Metrology	$\begin{aligned} & \text { EN62053-22, EN62053-23, } \\ & \text { EN50470-3. } \end{aligned}$
Pulse output	DIN43864, IEC62053-31
Approvals	Eligible System performance Meter for Go Solar California, CE, cULus "Listed"
Connections Cable cross-section area	Screw-type max. $2.5 \mathrm{~mm}^{2}$. min./max. screws tightening torque: $0.4 \mathrm{Nm} /$ 0.8 Nm . Suggested screws tightening torque: 0.5 Nm
Housing DIN	
Dimensions (WxHxD)	Module holder: $96 \times 96 \times 50 \mathrm{~mm}$. " A " and " B " type modules: $89.5 \times 63 \times 16 \mathrm{~mm}$. "C" type module: $89.5 \times 63 \times 20 \mathrm{~mm}$.
Max. depth behind the panel	With 3 modules $(A+B+C)$: 81.7 mm
Material Mounting	ABS/Nylon PA66, selfextinguishing: UL 94 V-0 Panel mounting
Protection degree Front Screw terminals	$\begin{aligned} & \text { IP65, NEMA4x, NEMA12 } \\ & \text { IP20 } \end{aligned}$
Weight	Approx. 400 g (packing included)

Insulation between inputs and outputs

	Power Supply (HoL)	Mesuring inputs	Relè output $(M O R 2)$	Static ouput $(\mathrm{MOO2})$	Serial port	Ethernet port Analogue outputs	
Power Supply (H o L)	-	4 kV					
Mesuring inputs	4 kV	-	4 kV				
Relè output (MOR2)	4 kV	4 kV	2 kV	-	4 kV	4 kV	4 kV
Static ouput (MOO2)	4 kV	4 kV	-	2 kV	4 kV	4 kV	4 kV
Serial port	4 kV	4 kV	4 kV	4 kV	-	-	4 kV
Ethernet port	4 kV	4 kV	4 kV	4 kV	-	4 kV	
Analogue outputs	4 kV	$4 \mathrm{kV}{ }^{(1)}$					

(1): respect another module 4 kV , in the same module 0 kV .
-: combination not allowed.
NOTE: all the models have, mandatory, to be connected to external current transformers because the isolation among the current inputs is just functional (100VAC).

List of the variables that can be connected to:

- Communication port (all listed variables)
- Analogue outputs (all variables with the only exclusion of "energies" and "run hour counter"
- Pulse outputs (only "energies")
- Alarm outputs ("energies", "hour counter" and "max" excluded)

No	Variable	$\begin{aligned} & \text { 1-ph. } \\ & \text { sys } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2-ph. } \\ & \text { sys } \\ & \hline \end{aligned}$	3-ph. 3/4-wire balanced sys	3-ph. 2-wire balanced sys	3-ph. 3-wire unbal. sys	3-ph. 4-wire unbal. sys	Notes
1	VL-N sys	0	X	X	X	\#	X	sys= system= \sum
2	VL1	X	X	X	X	\#	X	
3	VL2	0	X	X	X	\#	X	
4	VL3	0	0	X	X	\#	X	
5	VL-L sys	0	\#	X	X	X	X	sys= system $=\Sigma$
6	VL1-2	\#	X	X	X	X	X	
7	VL2-3	\#	0	X	X	X	X	
8	VL3-1	\#	0	X	X	X	X	
9	Asys	0	X	0	0	X	X	
10	An	\#	X	O	0	0	X	
11	AL1	X	X	X	X	X	X	
12	AL2	0	X	X	X	X	X	
13	AL3	0	0	X	X	X	X	
14	VA sys	X	X	X	X	X	X	sys $=$ system $=\Sigma$
15	VA L1	X	X	X	X	\#	X	
16	VA L2	0	X	X	X	\#	X	
17	VA L3	0	0	X	X	\#	X	
18	var sys	X	X	X	X	X	X	sys= system $=\Sigma$
19	var L1	X	X	X	X	\#	X	
20	var L2	0	X	X	X	\#	X	
21	var L3	0	0	X	X	\#	X	
22	W sys	X	X	X	X	X	X	sys= system= Σ
23	WL1	X	X	X	X	\#	X	
24	WL2	0	X	X	X	\#	X	
25	WL3	0	0	X	X	\#	X	
26	PF sys	X	X	X	X	X	X	sys= system $=\Sigma$
27	PF L1	X	X	X	X	\#	X	
28	PF L2	0	X	X	X	\#	X	
29	PF L3	0	0	X	X	\#	X	
30	Hz	X	X	X	X	X	X	
31	Phase seq.	0	X	X	X	X	X	
32	Asy VLL	0	0	X	X	X	X	Asymmetry
33	Asy VLN	0	X	\#	0	\#	X	Asymmetry
34	Run Hours	X	X	X	X	X	X	
35	kWh (+)	X	X	X	X	X	X	Total
36	kvarh (+)	X	X	X	X	X	X	Total
37	kWh (+)	X	X	X	X	X	X	Partial
38	kvarh (+)	X	X	X	X	X	X	Partial
39	kWh (-)	X	X	X	X	X	X	Total
40	kvarh (-)	X	X	X	X	X	X	Total
41	kWh (-)	X	X	X	X	X	X	Partial
42	kvarh (-)	X	X	X	X	X	X	Partial
43	A L1 THD	X	X	X	X	X	X	
44	A L2 THD	0	X	X	X	X	X	
45	A L3 THD	0	0	X	X	X	X	
46	V L1 THD	X	X	X	X	0	X	
47	V L2 THD	0	X	X	X	0	X	
48	V L3 THD	0	0	X	X	0	X	
49	V L1-2 THD	X	X	X	X	X	X	
50	V L2-3 THD	0	X	X	X	X	X	
51	V L3-1 THD	0	0	X	X	X	X	

$(\mathrm{X})=$ available; $(\mathrm{O})=$ not available (variable not available on the display); (\#) Not available (the relevant page is not displayed)

Power supply specifications

AC: $6 \mathrm{VA} ;$
DC: 3.5 W

List of selectable applications

	Description	Notes
A	Cost allocation	Imported energy metering
B	Cost control	Imported and partial energy metering
C	Complex cost allocation	Imported/exported energy (total and partial)
\mathbf{D}	Solar	Imported and exported energy metering with some basic power analyzer function
\mathbf{E}	Complex cost and power analysis	Imported/exported energy (total and partial) and power analysis
F	Cost and power quality analysis	Imported energy and power quality analysis
G	Advanced energy and power analysis for power generation	Complete energy metering and power quality analysis

Display pages

						Line 5				App	cat	ons		
Type	No	Variable Type	Note	A	B	C	D	E	F	G				
	0	Home page		Program	mmable			x	x	x	x	x	x	x
a	1	Total kWh (+)	b, c, d	b, c, d	b, c, d	b, c, d		x	x	x	x	\times	x	x
a	2	Total kvarh (+)	b, c, d	b, c, d	b, c, d	b, c, d		x	x	x	x	x	x	x
a	3	Total kWh (-)	b, c, d	b, c, d	b, c, d	b, c, d				x	x	x		x
a	4	Total kvarh (-)	b, c, d	b, c, d	b, c, d	b, c, d				x	x	x		x
a	5	kWh (+) partial	b, c, d	b, c, d	b, c, d	b, c, d			x	x		x	x	x
a	6	kvarh (+) part.	b, c, d	b, c, d	b, c, d	b, c, d			x	x		x	\times	x
a	7	kWh (-) partial	b, c, d	b, c, d	b, c, d	b, c, d				x		x		x
a	8	kvarh (-) part.	b, c, d	b, c, d	b, c, d	b, c, d				x		x		x
a	9	Run Hours (99999999.99)	b, c, d	b, c, d	b, c, d	b, c, d				x	x	x	x	x
b	10	a/Phase seq.	VLN Σ	VL1	VL2	VL3	(1) (2)				x	x	x	x
b	11	a/Phase seq.	VLN Σ	VL1-2	VL2-3	VL3-1	(1) (2)				x	x	x	x
b	12	a/Phase seq.	An	AL1	AL2	AL3	(1) (2)				x	x	x	x
b	13	a/Phase seq.	Hz	"ASY"	VLL sys (\% asy)	VLL sys (\% asy)	(1) (2)				x	x	x	x
b	14	a/Phase seq.	A Σ	AL1	AL2	AL3	(1) (2)				x	x	x	x
c	15	a/Phase seq.	W Σ	WL1	WL2	WL3	(1) (2)				x	x	x	x
c	16	a/Phase seq.	var Σ	var L1	var L2	var L3	(1) (2)					x	x	x
c	17	a/Phase seq.	PF Σ	PF L1	PF L2	PF L3	(1) (2)					x	x	x
c	18	a/Phase seq.	VA Σ	VAL1	VA L2	VA L3	(1) (2)					x	x	x
d	19	a/Phase seq.		THD V1	THD V2	THD V3	(1) (2)						x	x
d	20	a/Phase seq.		THD V12	THD V23	THD V31	(1) (2)						x	x
d	21	a/Phase seq.		THD A1	THD A2	THD A3	(1) (2)						x	x

Note: the table refers to system 3P.n.
(1) Also maximum value storage (no EEPROM storage).
(2) Also average (dmd) value (no EEPROM storage).

Additional available information on the display

No	Line 1	Line 2	Line 3	Line 4	Line 5	Note	Applications						
							A	B	C	D	E	F	G
1	Lot n. (text) x xxx	Yr. (text) xx	SYS (text)	x (1/2/3)	1...60 (min) "dmd"		X	X	X	x	X	X	X
2	Conn. xxx.x (3ph.n/3ph/3ph./ $3 p h .2 / 1 \mathrm{ph} / 2 \mathrm{ph})$	CT.rA (text)	1.0 ... 99.99k	PT.rA (text)	1.0... 9999		X	x	x	X	X	x	X
3	LED PULSE (text) kWh	xxxx kWh per pulse					x	X	x	x	X	X	X
4	PULSE out1 (text) kWh/kvarh	xxxx kWh/kvarh per pulse	+/- tot/PAr				X	x	x	X	x	X	X
5	PULSE out2 (text) kWh/kvarh	xxxx kWh/kvarh per pulse	+/- tot/PAr				X	X	x	X	x	X	X
6	Remote out	out1 (text)	on/oFF	Out2 (text)	on/oFF		X	X	X	x	x	X	X
7	Alarm 1 nE/nd	None / out 1 / out 2	Set 1	Set 2	(measurement)					X	X	X	X
8	Alarm $2 \mathrm{nE} / \mathrm{nd}$	None / out 1 / out 2	Set 1	Set 2	(measurement)					X	X	X	X
9	Alarm $3 \mathrm{nE} / \mathrm{nd}$	None / out 1 / out 2	Set 1	Set 2	(measurement)					x	X	X	X
10	Alarm $4 \mathrm{nE} / \mathrm{nd}$	None / out 1 / out 2	Set 1	Set 2	(measurement)					x	X	X	X
11	Analogue 1	Hi:E	$0.0 \ldots 9999$	Hi.A	0.0 ... 100.0\%					x	x	X	X
12	Analogue 2	Hi:E	0.0 ... 9999	Hi.A	0.0 ... 100.0\%					x	x	X	X
13	COM port	None / out 1 / out 2	xxx (address)	bdr (text)	$\begin{gathered} 9.6 / 19.2 / \\ 38.4 / 115.2 \end{gathered}$		X	X	X	X	X	X	X
14	IP address	XXX	XXX	XXX	XXX		X	x	X	x	X	X	X

Back protection rotary switch

Function	Rotary switch position	Description
Unlok	1	All programming parameters are freely modifiable by means of the front key-pad and by means of the communication port.
Lock	7	The key-pad, as far as programming is concerned and the data through the serial communication cannot be changed (no writing into meter allowed). Data reading is allowed.

CARLO GAVAZZI

Accuracy (According to EN50470-3 and EN62053-23)

kWh, accuracy (RDG) depending on the current

kvarh, accuracy (RDG) depending on the current

——Accuracy limits (Reactive energy)
Start-up current: 5mA (AV5-6), 1mA (AV4-7)

WM3040Soft parameter progr. and var. reading software

WM3040Soft
Multi-language software (Italian, English, French, German, Spanish) for variable reading, instrument calibration and parameters programming. The program runs under Windows XP/Vista/7

Working mode
Three different working modes can be selected: - management of local RS232 (MODBUS); - management of a local RS485 network (MODBUS); - managed via TCP port

Used calculation formulas

Phase variables

Instantaneous effective voltage
$V_{1 N}=\sqrt{\frac{1}{n} \cdot \sum_{1}^{n}\left(V_{1 N}\right)_{i}^{2}}$
Instantaneous active power
$W_{1}=\frac{1}{n} \cdot \sum_{1}^{n}\left(V_{1 N}\right)_{i} \cdot\left(A_{1}\right)_{i}$
Instantaneous power factor
$\cos \varphi_{1}=\frac{W_{1}}{V A_{1}}$
Instantaneous effective current
$A_{1}=\sqrt{\frac{1}{n} \cdot \sum_{1}^{n}\left(A_{1}\right)_{i}^{2}}$
Instantaneous apparent power
$V A_{1}=V_{1 N} \cdot A_{1}$
Instantaneous reactive power
$\operatorname{var}_{1}=\sqrt{\left(V A_{1}\right)^{2}-\left(W_{1}\right)^{2}}$

System variables

Equivalent three-phase voltage
$V_{\Sigma}=\frac{V_{1}+V_{2}+V_{3}}{3} \cdot \sqrt{3}$
Voltage asymmetry
$A S Y_{L L}=\frac{\left(V_{L L \text { max }}-V_{L L \text { min }}\right)}{V_{L L} \Sigma}$
$A S Y_{L N}=\frac{\left(V_{L N \text { max }}-V_{L N \text { min }}\right)}{V_{L N} \Sigma}$
Three-phase reactive power
$\operatorname{var}_{\Sigma}=\left(\right.$ var $\left._{1}+\operatorname{var}_{2}+\operatorname{var}_{3}\right)$
Three-phase active power
$W_{\Sigma}=W_{1}+W_{2}+W_{3}$
Three-phase apparent power
$V A_{\Sigma}=\sqrt{W_{\Sigma}^{2}+\operatorname{var}_{\Sigma}^{2}}$
Total harmonic distortion
$T H D_{N}=100 \frac{\sqrt{\sum_{n=2}^{N}\left|X_{n}\right|^{2}}}{\left|X_{1}\right|}$

Three-phase power factor
$\cos \varphi_{\Sigma}=\frac{W_{\Sigma}}{V A_{\Sigma}}$
(TPF)

Energy metering

$k \operatorname{var} h i=\int_{t 1}^{t 2} Q i(t) d t \cong \Delta t \sum_{n 1}^{n 2} Q n j$
$k W h i=\int_{t 1}^{t 2} P i(t) d t \cong \Delta t \sum_{n 1}^{n 2} P n j$
Where:
$\mathbf{i}=$ considered phase (L1, L2 or L3) $\mathbf{P}=$ active power; $\mathbf{Q}=$ reactive power; $\mathbf{t}_{1}, \mathbf{t}_{2}=$ starting and ending time points of consumption recording; $\mathbf{n}=$ time unit; $\mathbf{t}=$ time interval between two successive power consumptions; $\mathbf{n}_{1}, \mathbf{n}_{2}=$ starting and ending discrete time points of consumption recording

Wiring diagrams

System type selection: 3-Ph. 2

System type selection: 3-Ph

System type selection: 3-Ph (cont.)

3-ph, 3-wire, unbalanced load Fig. 7

Wiring diagrams

System type selection: 3-Ph. 1

System type selection: 2-Ph (cont.)

2-ph, 3-wire

System type selection: 2-Ph

System type selection: 1-Ph

Power Supply
90 to 260VAC/DC (H option) Fig. 15

Static, relay and analogue outputs wiring diagrams

RS485 and RS232 wiring diagrams

NOTE. RS485: additional devices provided with RS485 are connected in parallel. The termination of the serial output is carried out only on the last instrument of the network, by means of a jumper between ($\mathrm{B}+$) and (T). \boldsymbol{A} : the communication RS232 and RS485 ports can't be connected and used simultaneously.

RS485 wiring diagram of Bacnet module

NOTE. RS485: additional devices provided with RS485 are connected in parallel. The termination of the serial output is carried out only on the last instrument of the network, by means of a jumper between (B+) and (T).

Front panel description

1. Key-pad

To program the configuration parameters and scroll the variables on the display.
2. Display

LCD-type with alphanumeric indications to:

- display configuration parameters;
- display all the measured variables.

3. kWh LED

Red LED blinking proportional to the energy being measured
4. Alarm LED's

Red LED's light-on when virtual alarms are activated.
5. Main bar-graph

To display the power consumption versus the installed power.

Dimensions and Panel cut-out

